Semantic segmentation of high-resolution remote sensing images plays an important role in applications for building extraction. However, the current algorithms have some semantic information extraction limitations, and these can lead to poor segmentation results. To extract buildings with high accuracy, we propose a multiloss neural network based on attention. The designed network, based on U-Net, can improve the sensitivity of the model by the attention block and suppress the background influence of irrelevant feature areas. To improve the ability of the model, a multiloss approach is proposed during training the network. The experimental results show that the proposed model offers great improvement over other state-of-the-art methods. For the public Inria Aerial Image Labeling dataset, the F1 score reached 76.96% and showed good performance on the Aerial Imagery for Roof Segmentation dataset.
Mangroves play an important role in many aspects of ecosystem services. Mangroves should be accurately extracted from remote sensing imagery to dynamically map and monitor the mangrove distribution area. However, popular mangrove extraction methods, such as the object-oriented method, still have some defects for remote sensing imagery, such as being low-intelligence, time-consuming, and laborious. A pixel classification model inspired by deep learning technology was proposed to solve these problems. Three modules in the proposed model were designed to improve the model performance. A multiscale context embedding module was designed to extract multiscale context information. Location information was restored by the global attention module, and the boundary of the feature map was optimized by the boundary fitting unit. Remote sensing imagery and mangrove distribution ground truth labels obtained through visual interpretation were applied to build the dataset. Then, the dataset was used to train deep convolutional neural network (CNN) for extracting the mangrove. Finally, comparative experiments were conducted to prove the potential for mangrove extraction. We selected the Sentinel-2A remote sensing data acquired on 13 April 2018 in Hainan Dongzhaigang National Nature Reserve in China to conduct a group of experiments. After processing, the data exhibited 2093 × 2214 pixels, and a mangrove extraction dataset was generated. The dataset was made from Sentinel-2A satellite, which includes five original bands, namely R, G, B, NIR, and SWIR-1, and six multispectral indices, namely normalization difference vegetation index (NDVI), modified normalized difference water index (MNDWI), forest discrimination index (FDI), wetland forest index (WFI), mangrove discrimination index (MDI), and the first principal component (PCA1). The dataset has a total of 6400 images. Experimental results based on datasets show that the overall accuracy of the trained mangrove extraction network reaches 97.48%. Our method benefits from CNN and achieves a more accurate intersection and union ratio than other machine learning and pixel classification methods by analysis. The designed model global attention module, multiscale context embedding, and boundary fitting unit are helpful for mangrove extraction.
The coronavirus disease 2019 (COVID-19) first identified at the end of 2019, significantly impacts the regional environment and human health. This study assesses PM2.5 exposure and health risk during COVID-19, and its driving factors have been analyzed using spatiotemporal big data, including Tencent location-based services (LBS) data, place of interest (POI), and PM2.5 site monitoring data. Specifically, the empirical orthogonal function (EOF) is utilized to analyze the spatiotemporal variation of PM2.5 concentration firstly. Then, population exposure and health risks of PM2.5 during the COVID-19 epidemic have been assessed based on LBS data. To further understand the driving factors of PM2.5 pollution, the relationship between PM2.5 concentration and POI data has been quantitatively analyzed using geographically weighted regression (GWR). The results show the time series coefficients of monthly PM2.5 concentrations distributed with a U-shape, i.e., with a decrease followed by an increase from January to December. In terms of spatial distribution, the PM2.5 concentration shows a noteworthy decline over the Central and North China. The LBS-based population density distribution indicates that the health risk of PM2.5 in the west is significantly lower than that in the Middle East. Urban gross domestic product (GDP) and urban green area are negatively correlated with PM2.5; while, road area, urban taxis, urban buses, and urban factories are positive. Among them, the number of urban factories contributes the most to PM2.5 pollution. In terms of reducing the health risks and PM2.5 pollution, several pointed suggestions to improve the status has been proposed.
Abstract:Much of the taxi route-planning literature has focused on driver strategies for finding passengers and determining the hot spot pick-up locations using historical global positioning system (GPS) trajectories of taxis based on driver experience, distance from the passenger drop-off location to the next passenger pick-up location and the waiting times at recommended locations for the next passenger. The present work, however, considers the average taxi travel speed mined from historical taxi GPS trajectory data and the allocation of cruising routes to more than one taxi driver in a small-scale region to neighboring pick-up locations. A spatio-temporal trajectory model with load balancing allocations is presented to not only explore pick-up/drop-off information but also provide taxi drivers with cruising routes to the recommended pick-up locations. In simulation experiments, our study shows that taxi drivers using cruising routes recommended by our spatio-temporal trajectory model can significantly reduce the average waiting time and travel less distance to quickly find their next passengers, and the load balancing strategy significantly alleviates road loads. These objective measures can help us better understand spatio-temporal traffic patterns and guide taxi navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.