olyploidy or whole-genome duplication provides genomic opportunities for evolutionary innovations in many animal groups and all flowering plants 1-5 , including most important crops such as wheat, cotton and canola or oilseed rape 6-8. The common occurrence of polyploidy may suggest its advantage and potential for selection and adaptation 2,3,9 , through rapid genetic and genomic changes as observed in newly formed Brassica napus 10 , Tragopogon miscellus 11 and polyploid wheat 12 , and/or largely epigenetic modifications as in Arabidopsis and cotton polyploids 5,13. Cotton is a powerful model for revealing genomic insights into polyploidy 3 , providing a phylogenetically defined framework of polyploidization (~1.5 million years ago (Ma)) 14 , followed by natural diversification and crop domestication 15. The evolutionary history of the polyploid cotton clade is longer than that of some other allopolyploids, such as hexaploid wheat (~8,000 years) 12 , tetraploid canola (~7,500 years) 16 and tetraploid Tragopogon (~150 years) 11. Polyploidization between an A-genome African species (Gossypium arboreum (Ga)-like) and a D-genome American species (G. raimondii (Gr)-like) in the New World created a new allotetraploid or amphidiploid (AD-genome) cotton clade (Fig. 1a) 14 , which has diversified into five polyploid lineages, G. hirsutum (Gh) (AD) 1 , G. barbadense (Gb) (AD) 2 , G. tomentosum (Gt) (AD) 3 , G. mustelinum (Gm) (AD) 4 and G. darwinii (Gd) (AD) 5. G. ekmanianum and G. stephensii are recently characterized and closely related to Gh 17. Gh and Gb were separately domesticated from perennial shrubs to become annualized Upland and Pima cottons 15. To date, global cotton production provides income for ~100 million families across ~150 countries, with an annual economic impact of ~US$500 billion worldwide 6. However, cotton supply is reduced due to aridification, climate change and pest emergence. Future improvements in cotton and sustainability will involve use of the genomic resources and gene-editing tools becoming available in many crops 9,18,19. Cotton genomes have been sequenced for the D-genome (Gr) 20 and A-genome (Ga) 21 diploids and two cultivated tetraploids 22-26. These analyses have shown structural, genetic and gene expression variation related to fiber traits and stress responses in cultivated
Using confocal microscopy, X‐ray microanalysis and the scanning ion‐selective electrode technique, we investigated the signalling of H2O2, cytosolic Ca2+ ([Ca2+]cyt) and the PM H+‐coupled transport system in K+/Na+ homeostasis control in NaCl‐stressed calluses of Populus euphratica. An obvious Na+/H+ antiport was seen in salinized cells; however, NaCl stress caused a net K+ efflux, because of the salt‐induced membrane depolarization. H2O2 levels, regulated upwards by salinity, contributed to ionic homeostasis, because H2O2 restrictions by DPI or DMTU caused enhanced K+ efflux and decreased Na+/H+ antiport activity. NaCl induced a net Ca2+ influx and a subsequent rise of [Ca2+]cyt, which is involved in H2O2‐mediated K+/Na+ homeostasis in salinized P. euphratica cells. When callus cells were pretreated with inhibitors of the Na+/H+ antiport system, the NaCl‐induced elevation of H2O2 and [Ca2+]cyt was correspondingly restricted, leading to a greater K+ efflux and a more pronounced reduction in Na+/H+ antiport activity. Results suggest that the PM H+‐coupled transport system mediates H+ translocation and triggers the stress signalling of H2O2 and Ca2+, which results in a K+/Na+ homeostasis via mediations of K+ channels and the Na+/H+ antiport system in the PM of NaCl‐stressed cells. Accordingly, a salt stress signalling pathway of P. euphratica cells is proposed.
Using callus cells of a salt-tolerant Populus euphratica Oliver and a salt-sensitive P. popularis 35-44 (P. popularis), the effects of NaCl stress on hydrogen peroxide (H 2 O 2 ) and nitric oxide (NO) production and the relevance to ionic homeostasis and antioxidant defense were investigated. Results show that P. euphratica exhibited a greater capacity to tolerate NaCl stress in terms of cell viability, membrane permeability and K ? /Na ? relations. NaCl salinity (150 mM) caused a rapid increase of H 2 O 2 and NO in P. euphratica cells, but not in P. popularis. Moreover, salinised P. euphratica cells retained a high and stable level of H 2 O 2 and NO during the period of 24-h salt stress. Noteworthy, P. eupratica cells increased activities of superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase under salinity stress, but these antioxidant enzymes were significantly inhibited by the salt treatment in P. popularis cells. Pharmacological experiments proved that the NaCl-induced H 2 O 2 and NO was interdependent and contributed to the mediation of K ? /Na ? homeostasis and antioxidant defense in P. euphratica cells. Given these results, we conclude that the increased H 2 O 2 and NO enable P. euphratica cells to regulate ionic and ROS (reactive oxygen species) homeostasis under salinity stress in the longer term.
Light-mediated seedling development is coordinately controlled by a variety of key regulators. Here, we identified two B-box (BBX)-containing proteins, BBX30 and BBX31, as repressors of photomorphogenesis. ELONGATED HYPOCOTYL5, a central regulator of light signaling, directly binds to the G-box cis-element present in the promoters of BBX30 and BBX31 and negatively controls their transcription levels in the light. Seedlings with mutations in BBX30 or BBX31 are hypersensitive to light, whereas the overexpression of BBX30 or BBX31 leads to hypo-photomorphogenic growth in the light. Furthermore, transgenic and phenotypic analysis revealed that the B-box domain of BBX30 or BBX31 is essential for their respective functioning in the regulation of photomorphogenic development in plants. In conclusion, BBX30 and BBX31 act as key negative regulators of light signaling, and their transcription is repressed by ELONGATED HYPOCOTYL5 through directly associating with their promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.