Bearing fault diagnosis has been a challenge in the monitoring activities of rotating machinery, and it's receiving more and more attention.The conventional fault diagnosis methods usually extract features from the waveforms or spectrums of vibration signals in order to realize fault classification. In this paper, a novel feature in the form of images is presented, namely the spectrum images of vibration signals. The spectrum images are simply obtained by doing fast Fourier transformation. Such images are processed with two-dimensional principal component analysis (2DPCA) to reduce the dimensions, and then a minimum distance method is applied to classify the faults of bearings. The effectiveness of the proposed method is verified with experimental data.
Aiming at reducing the production downtime and maintenance cost, prognostics and health management (PHM) of rotating machinery often includes the remaining useful life (RUL) prediction of bearings. In this paper, a method combining the generalized Weibull failure rate function (WFRF) and radial basis function (RBF) neural network is developed to deal with the RUL prediction of bearings. A novel indicator, namely, the power value on the sensitive frequency band (SFB), is proposed to track bearing degradation process. Generalized WFRF is used to fit the degradation indicator series to reduce the effect of noise and avoid areas of fluctuation in the time domain. RBF neural network is employed to predict the RUL of bearings with times and fitted power values at present and previous inspections as input. Meanwhile, the life percentage is selected as output. The performance of the proposed method is validated by an accelerated bearing run-to-failure experiment, and the results demonstrate the advantage of this method in achieving more accurate RUL prediction.
Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noises. In order to effectively detect the fault of bearings, a novel spectrum searching method is proposed. The structural information of spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of impulses generated by faults can be clearly identified and analysed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. Mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with simulated signals and experimental signals.
In order to diagnose bearing faults under different operating state and limited sample condition, a fault diagnosis method based on adjusted spectrum image of vibration signal is proposed in this paper. Firstly, the Davies–Bouldin index (DBI) is employed to select a proper capture focus (CF) and image size, and the spectrum of vibration signal is computed via fast Fourier transformation (FFT) and adjusted according to the average rotating speed. Then, the spectrum is plotted and captured as a two-dimensional (2D) image with the optimized CF and image size. Two-dimensional principal component analysis (2DPCA) is used to reduce the dimension of images, and finally a nearest neighbour method is applied to classify the faults of bearings. Two experiments are carried out to validate the effectiveness of the proposed method. Besides, a further investigation on the effect of spectrum frequency resolution is conducted and a recommended selection method of frequency resolution is given based on the experimental performances. In our method, the training samples could be from only one operating condition, while the testing samples are from all possible operation conditions. All experiment results have demonstrated that the proposed method could achieve high classification accuracy even with very limited training samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.