The exemplar-based face sketch synthesis method generally contains two steps: neighbor selection and reconstruction weight representation. Pixel intensities are widely used as features by most of the existing exemplar-based methods, which lacks of representation ability and robustness to light variations and clutter backgrounds. We present a novel face sketch synthesis method combining generative exemplar-based method and discriminatively trained deep convolutional neural networks (dCNNs) via a deep graphical feature learning framework. Our method works in both two steps by using deep discriminative representations derived from dCNNs. Instead of using it directly, we boost its representation capability by a deep graphical feature learning framework. Finally, the optimal weights of deep representations and optimal reconstruction weights for face sketch synthesis can be obtained simultaneously. With the optimal reconstruction weights, we can synthesize high quality sketches which is robust against light variations and clutter backgrounds. Extensive experiments on public face sketch databases show that our method outperforms state-of-the-art methods, in terms of both synthesis quality and recognition ability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.