This work focuses on the coupling effect of molecular chain displacement and trap characteristics on direct current (DC) breakdown properties of high density/low density polyethylene (HDPE/LDPE) blend insulation. Frequency domain spectroscopy (FDS) and isothermal discharge current (IDC) are used to characterize the dielectric relaxation and trap characteristics of HDPE/LDPE blends. A DC breakdown model is proposed to reveal the mechanisms of the molecular chain displacement and carrier trap on the DC breakdown strength. The dielectric relaxation α and δ present segmental motions and thermal ion polarization behaviours of HDPE/LDPE blends, respectively. α dielectric relaxation strength (Δεα) increases as the amount of HDPE increases from 0 to 5 wt%, and then declines with a further increase of HDPE content to 20 wt%. According to the velocity equation, the increase of Δεα will increase the molecular chain displacement, resulting in a larger free volume, which will provide electrons with larger free path λ to form hot electrons. A positive correlation exists between the activation energy of the dielectric relaxation process δ and trap density, and the increase of δ dielectric relaxation strength (Δεδ) will adversely affect the breakdown strength of the specimen. HDPE/LDPE blends with 15 wt% HDPE content have lower Δεα and lowest Δεδ, which decreases the mean free path λ of molecular chain and thermal ion polarization. At the same time, it has the highest deep trap density, thus increasing the probability of hot electrons being captured and improving the DC breakdown strength. It is concluded the breakdown of the dielectric is synergistically affected by the molecular chain displacement and carrier trap.
The electrical tree initiation and propagation behaviors are a key issue for the polyethylenebased cable insulation. This paper focuses on the effect of crystalline morphology on electrical tree growth characteristics of high-density and low-density polyethylene (HDPE/LDPE) blend insulation. In this paper, the electrical tree growth characteristics of HDPE/LDPE blends with HDPE mass fractions of 0, 10, 15, 20 wt% are investigated under repetitive impulse voltage at 40, 60, 80 °C. It is found that with the rise of HDPE content from 0 to 15 wt%, the growth rate and accumulated damage of electrical tree decreases, with the morphology of electrical tree tending to bush tree. The increasing of voltage amplitude improves the energy of injected charge while the temperature rise leads to the relaxation of molecular chain, which both result in the promotion of collision ionization, thus increasing the density of electrical tree. Compared with branch tree, bush tree illustrates better inhibition of discharge tracks due to uniform electric field at the end of branches. The crystalline characteristics of HDPE/LDPE blends indicate that the crystallinity increases with the addition of HDPE, and the blend comprising 15 wt% HDPE in an LDPE matrix apparently reduces the average size of spherulites and improves the distribution of spherulites evenly. The upsurge of crystalamorphous interface leads to the increase of deep trap energy level density and the decrease of carrier mobility. Carrier injection and migration at the interface between crystalline and amorphous regions are restrained, thus inhibiting the growth of electrical tree. It is concluded that the crystalline morphology modified by polymer blending has a significant effect on the electrical tree growth characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.