Gut microbiota dysbiosis contributes to the onset and perpetuation of inflammatory bowel disease (IBD). Given that gut microbiotas vary across geography and ethnicity, it remains obscure whether any universal microbial signatures for IBD diagnosis and prognosis evaluation exist irrespective of populations. Here we profiled the fecal microbiota of a series of Chinese IBD patients and combined them with two Western IBD cohorts, PRISM and RISK, for meta-analyses. We found that the gut microbial alteration patterns in IBD are similar among Chinese and Westerners. Our prediction model based on gut microbiome for IBD diagnosis is robust across the cohorts, which showed 87.5% and 79.1% prediction accuracy in Crohn's disease (CD) and ulcerative colitis (UC) patients, respectively. A relative increase in the levels of Actinobacteria and Proteobacteria (Enterobacteriaceae) and a relative decrease in the levels of Firmicutes (Clostridiales) were strongly correlated with IBD severity (P Ͻ 0.05). Additionally, restoration of gut microbiota diversity and a significant increase in Clostridiales relative abundance were found in patients responding to infliximab (IFX [Remicade]) treatment compared to those in relapse. Moreover, certain microbes, mainly Clostridiales, predicted the treatment effectiveness with 86.5% accuracy alone and 93.8% accuracy in combination with calprotectin levels and Crohn's disease activity index (CDAI). Taking the results together, we conclude that gut microbiota can offer a set of universal biomarkers for diagnosis, disease activity evaluation, and infliximab treatment response prediction in IBD. IMPORTANCEIn the present report, we show that the human fecal microbiota contains promising and universal biomarkers for the noninvasive evaluation of inflammatory bowel disease severity and IFX treatment efficacy, emphasizing the potential
The Last Glacial Maximum (LGM), one of the best-studied paleoclimatic intervals, offers a prime opportunity to investigate how the climate system responds to changes in greenhouse gases (GHGs) and the cryosphere. Previous work has sought to constrain the magnitude and pattern of glacial cooling from paleothermometers, but the uneven distribution of the proxies, as well as their uncertainties, has challenged the construction of a full-field view of the LGM climate state. Here, we combine a large collection of geochemical proxies for sea-surface temperature with an isotope-enabled climate model ensemble to produce a field reconstruction of LGM temperatures using data assimilation. The reconstruction is validated with withheld proxies as well as independent ice core and speleothem d18O measurements. Our assimilated product provides a precise constraint on global mean LGM cooling of -5.9˚C (-6.3 – -5.6˚C, 95% CI). Given assumptions concerning the radiative forcing of GHGs, ice sheets, and aerosols, this cooling translates to an equilibrium climate sensitivity (ECS) of 3.2˚C (2.2 – 4.3˚C, 95% CI), a value that is higher than previous estimates and but consistent with the traditional consensus range of 2 – 4.5˚C.
Host-microbial cross-talk plays a crucial role in maintenance of gut homeostasis. However, how microbiota-derived metabolites, e.g., butyrate, regulate functions of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) remains elusive. We sought to investigate the effects of butyrate on IBD neutrophils and elucidate the therapeutic potential in regulating mucosal inflammation. Peripheral neutrophils were isolated from IBD patients and healthy donors, and profiles of proinflammatory cytokines and chemokines were determined by qRT-PCR and ELISA, respectively. The migration and release of neutrophil extracellular traps (NETs) were studied by a Transwell model and immunofluorescence, respectively. The in vivo role of butyrate in regulating IBD neutrophils was evaluated in a DSS-induced colitis model in mice. We found that butyrate significantly inhibited IBD neutrophils to produce proinflammatory cytokines, chemokines, and calprotectins. Blockade of GPCR signaling with pertussis toxin (PTX) did not interfere the effects whereas pan-histone deacetylase (HDAC) inhibitor, trichostatin A (TSA) effectively mimicked the role of butyrate. Furthermore, in vitro studies confirmed that butyrate suppressed neutrophil migration and formation of NETs from both CD and UC patients. RNA sequencing analysis revealed that the immunomodulatory effects of butyrate on IBD neutrophils were involved in leukocyte activation, regulation of innate immune response and response to oxidative stress. Consistently, oral administration of butyrate markedly ameliorated mucosal inflammation in DSS-induced murine colitis through inhibition of neutrophil-associated immune responses such as proinflammatory mediators and NET formation. Our data thus reveal that butyrate constrains neutrophil functions and may serve as a novel therapeutic potential in the treatment of IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.