A recommender system aims to provide users with personalized online product or service recommendations to handle the increasing online information overload problem and improve customer relationship management. Various recommender system techniques have been proposed since the mid-1990s, and many sorts of recommender system software have been developed recently for a variety of applications. Researchers and managers recognize that recommender systems offer great opportunities and challenges for business, government, education, and other domains, with more recent successful developments of recommender systems for real-world applications becoming apparent. It is thus vital that a high quality, instructive review of current trends should be conducted, not only of the theoretical research results but more importantly of the practical developments in recommender systems. This paper therefore reviews up-to-date application developments of recommender systems, clusters their applications into eight main categories: e-government, e-business, e-commerce/e-shopping, e-library, e-learning, e-tourism, e-resource services and e-group activities, and summarizes the related recommendation techniques used in each category. It systematically examines the reported recommender systems through four dimensions: recommendation methods (such as CF), recommender systems software (such as BizSeeker), real-world application domains (such as e-business) and application platforms (such as mobilebased platforms). Some significant new topics are identified and listed as new directions. By providing a stateof-the-art knowledge, this survey will directly support researchers and practical professionals in their understanding of developments in recommender system applications.
Recommender systems are emerging in e-commerce as important promotion tools to assist customers to discover potentially interesting items. Currently, most of these are single-objective and search for items that fit the overall preference of a particular user. In real applications, such as restaurant recommendations, however, users often have multiple objectives such as group preferences and restaurant ambiance. This paper highlights the need for multi-objective recommendations and provides a solution using hypergraph ranking. A general User-Item-Attribute-Context data model is proposed to summarize different information resources and high-order relationships for the construction of a multipartite hypergraph. This study develops an improved balanced hypergraph ranking method to rank different types of objects in hypergraph data. An overall framework is then proposed as a guideline for the implementation of multiobjective recommender systems. Empirical experiments are conducted with the dataset from a review site Yelp.com, and the outcomes demonstrate that the proposed model performs very well for multi-objective recommendations. The experiments also demonstrate that this framework is still compatible for traditional single-objective recommendations and can improve accuracy significantly. In conclusion, the proposed multi-objective recommendation framework is able to handle complex and changing demands for e-commerce customers.
Recommender systems aim to identify relevant items for particular users in large-scale online applications. The historical rating data of users is a valuable input resource for many recommendation models such as collaborative filtering (CF), but these models are known to suffer from the rating sparsity problem when the users or items under consideration have insufficient rating records. With the continued growth of online social networks, the increased user-to-user relationships are reported to be helpful and can alleviate the CF rating sparsity problem. Although researchers have developed a range of social network-based recommender systems, there is no unified model to handle multirelational social networks. To address this challenge, this paper represents different user relationships in a multigraph and develops a multigraph ranking model to identify and recommend the nearest neighbors of particular users in high-order environments. We conduct empirical experiments on two real-world datasets: 1) Epinions and 2) Last.fm, and the comprehensive comparison with other approaches demonstrates that our model improves recommendation performance in terms of both recommendation coverage and accuracy, especially when the rating data are sparse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.