Many potential landslides occured in the Baihetan reservoir area before impoundment. After impoundment, these landslides may still slide, affecting the safe operation of the reservoir area (e.g., causing barrier lakes and floods). Identifying the locations of landslides and their distribution pattern has attracted attention in China and globally. In addition, due to the rolling terrain of the reservoir area, synthetic aperture radar (SAR) imaging will affect the interactive synthetic aperture radar (InSAR) deformation results. Only by obtaining effective deformation information can active landslides be accurately identified. Therefore, the banks of the Hulukou Xiangbiling section of the Baihetan reservoir area before impoundment in the Jinsha River Basin were studied in this paper. Using terrain data and the satellite parameters from Sentinel-1A ascending and descending orbits and ALOS PALSAR ascending orbit, the line-of-sight visibility was quantitatively analyzed, and an analysis method was proposed. Based on the SAR data visibility analysis, the small baseline subset (SBAS) technique was used to process the SAR data to acquire effective deformation. InSAR deformation data was combined with Google Earth imagery to identify 25 active landslides. After field verification, 21 active landslides (14 new) were determined. Most of the active landslides are controlled by faults, and the strata of the other landslides are relatively weak. This InSAR analysis method based on SAR data visibility can provide a reference for identifying and analyzing active landslides in other complicated terrain.
Atmospheric effects are among the primary error sources affecting the accuracy of interferometric synthetic aperture radar (InSAR). The topography-dependent atmospheric effect is particularly noteworthy in reservoir areas for landslide monitoring utilizing InSAR, which must be effectively corrected to complete the InSAR high-accuracy measurement. This paper proposed a topography-dependent atmospheric correction method based on the Multi-Layer Perceptron (MLP) neural network model combined with topography and spatial data information. We used this proposed approach for the atmospheric correction of the interferometric pairs of Sentinel-1 images in the Baihetan dam. We contrasted the outcomes with those obtained using the generic atmospheric correction online service for InSAR (GACOS) correction and the traditional linear model correction. The results indicated that the MLP neural network model correction reduced the phase standard deviation of the Sentinel-1 interferogram by an average of 64% and nearly eliminated the phase-elevation correlation. Both comparisons outperformed the GACOS correction and the linear model correction. Through two real-world examples, we demonstrated how slopes with displacements, which were previously obscured by a significant topography-dependent atmospheric delay, could be successfully and clearly identified in the interferograms following the correction by the MLP neural network. The topography-dependent atmosphere can be better corrected using the MLP neural network model suggested in this paper. Unlike the previous model, this proposed approach could be adjusted to fit each interferogram, regardless of how much of the topography-dependent atmosphere was present. In order to improve the effectiveness of DInSAR and time-series InSAR solutions, it can be applied immediately to the interferogram to retrieve the effective displacement information that cannot be identified before the correction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.