Resistive random access memory (RRAM) based on hybrid organic-inorganic halide perovskite (HOIP) has recently gained significant interests due to its low activation energy of ion migration. HOIP RRAM has been...
Memristive devices and systems have emerged as powerful technologies to fuel neuromorphic chips. However, the traditional two-terminal memristor still suffers from nonideal device characteristics, raising challenges for its further application in versatile biomimetic emulation for neuromorphic computing owing to insufficient control of filament forming for filamentary-type cells and a transport barrier for interfacial switching cells. Here, we propose three-terminal memristors with a top-gate field-effect geometry by employing a ferroelectric material, poly(vinylidene fluoride–trifluoroethylene), as the dielectric layer. This approach can finely modulate ion transport and contact barrier at the switching interface in non-filamentary perovskite memristors, thus, creating two distinct operation modes (volatile and nonvolatile). Additionally, perovskite memristors show desirable resistive switching performance, including forming-free operation, high yield of 88.9%, cycle-to-cycle variation of 7.8%, and low operating current of sub-100 nA. The dual-mode memristor is capable of emulating biological nociception in both active (perceiving pain) and blocked states (suppressing pain signaling).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.