Open circuit voltage (OCV) is an important characteristic parameter of lithium-ion batteries, which is used to analyze the changes of electronic energy in electrode materials, and to estimate battery state of charge (SOC) and manage the battery pack. Therefore, accurate OCV modeling is a great significance for lithium-ion battery management. In this paper, the characteristics of high-capacity lithium-ion batteries at different temperatures were considered, and the OCV-SOC characteristic curves at different temperatures were studied by modeling, exponential, polynomial, sum of sin functions, and Gaussian model fitting method with pulse test data. The parameters of fitting OCV-SOC curves by exponential model (n = 2), polynomial model (n = 3~7), sum of sin functions model (n = 3), and Gaussian model (n = 4) at temperatures of 45 °C, 25 °C, 0 °C, and −20°C are obtained, and the errors are analyzed. The experimental results show that the operating temperature of the battery influences the OCV-SOC characteristic significantly. Therefore, these factors need to be considered in order to increase the accuracy of the model and improve the accuracy of battery state estimation.
Accurate state of charge (SOC) estimation is of great significance for a lithium-ion battery to ensure its safe operation and to prevent it from over-charging or over-discharging. However, it is difficult to get an accurate value of SOC since it is an inner sate of a battery cell, which cannot be directly measured. This paper presents an Adaptive Cubature Kalman filter (ACKF)-based SOC estimation algorithm for lithium-ion batteries in electric vehicles. Firstly, the lithium-ion battery is modeled using the second-order resistor-capacitor (RC) equivalent circuit and parameters of the battery model are determined by the forgetting factor least-squares method. Then, the Adaptive Cubature Kalman filter for battery SOC estimation is introduced and the estimated process is presented. Finally, two typical driving cycles, including the Dynamic Stress Test (DST) and New European Driving Cycle (NEDC) are applied to evaluate the performance of the proposed method by comparing with the traditional extended Kalman filter (EKF) and cubature Kalman filter (CKF) algorithms. Experimental results show that the ACKF algorithm has better performance in terms of SOC estimation accuracy, convergence to different initial SOC errors and robustness against voltage measurement noise as compared with the traditional EKF and CKF algorithms.
OPEN ACCESSEnergies 2015, 8 5917
State of charge (SOC) estimation is the core of any battery management system. Most closed-loop SOC estimation algorithms are based on the equivalent circuit model with fixed parameters. However, the parameters of the equivalent circuit model will change as temperature or SOC changes, resulting in reduced SOC estimation accuracy. In this paper, two SOC estimation algorithms with online parameter identification are proposed to solve this problem based on forgetting factor recursive least squares (FFRLS) and nonlinear Kalman filter. The parameters of a Thevenin model are constantly updated by FFRLS. The nonlinear Kalman filter is used to perform the recursive operation to estimate SOC. Experiments in variable temperature environments verify the effectiveness of the proposed algorithms. A combination of four driving cycles is loaded on lithium-ion batteries to test the adaptability of the approaches to different working conditions. Under certain conditions, the average error of the SOC estimation dropped from 5.6% to 1.1% after adding the online parameters identification, showing that the estimation accuracy of proposed algorithms is greatly improved. Besides, simulated measurement noise is added to the test data to prove the robustness of the algorithms.
Abstract:For model-based state of charge (SOC) estimation methods, the battery model parameters change with temperature, SOC, and so forth, causing the estimation error to increase. Constantly updating model parameters during battery operation, also known as online parameter identification, can effectively solve this problem. In this paper, a lithium-ion battery is modeled using the Thevenin model. A variable forgetting factor (VFF) strategy is introduced to improve forgetting factor recursive least squares (FFRLS) to variable forgetting factor recursive least squares (VFF-RLS). A novel method based on VFF-RLS for the online identification of the Thevenin model is proposed. Experiments verified that VFF-RLS gives more stable online parameter identification results than FFRLS. Combined with an unscented Kalman filter (UKF) algorithm, a joint algorithm named VFF-RLS-UKF is proposed for SOC estimation. In a variable-temperature environment, a battery SOC estimation experiment was performed using the joint algorithm. The average error of the SOC estimation was as low as 0.595% in some experiments. Experiments showed that VFF-RLS can effectively track the changes in model parameters. The joint algorithm improved the SOC estimation accuracy compared to the method with the fixed forgetting factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.