Sate of charge (SOC) accurate estimation is one of the most important functions in a battery management system for battery packs used in electrical vehicles. This paper focuses on battery SOC estimation and its issues and challenges by exploring different existing estimation methodologies. The key technologies of lithium-ion battery state estimation methodologies of the electrical vehicles categorized under five groups, such as the conventional method, adaptive filter algorithm, learning algorithm, nonlinear observer, and the hybrid method, are explored in an in-depth analysis. Lithium-ion battery characteristic, battery model, estimation algorithm, and cell unbalancing are the most important factors that affect the accuracy and robustness of SOC estimation. Finally, this paper concludes with the challenges of SOC estimation and suggests other directions for possible research efforts.
Open circuit voltage (OCV) is an important characteristic parameter of lithium-ion batteries, which is used to analyze the changes of electronic energy in electrode materials, and to estimate battery state of charge (SOC) and manage the battery pack. Therefore, accurate OCV modeling is a great significance for lithium-ion battery management. In this paper, the characteristics of high-capacity lithium-ion batteries at different temperatures were considered, and the OCV-SOC characteristic curves at different temperatures were studied by modeling, exponential, polynomial, sum of sin functions, and Gaussian model fitting method with pulse test data. The parameters of fitting OCV-SOC curves by exponential model (n = 2), polynomial model (n = 3~7), sum of sin functions model (n = 3), and Gaussian model (n = 4) at temperatures of 45 °C, 25 °C, 0 °C, and −20°C are obtained, and the errors are analyzed. The experimental results show that the operating temperature of the battery influences the OCV-SOC characteristic significantly. Therefore, these factors need to be considered in order to increase the accuracy of the model and improve the accuracy of battery state estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.