H2A family member Z (H2AFZ) is a highly conserved gene encoding H2A.Z.1, an isoform of histone variant H2A.Z, and is implicated in cancer. In this study, we report that overexpression of H2AFZ is associated with tumor malignancy and poor prognosis in HCC patients. Functional network analysis suggested that H2AFZ mainly regulates cell cycle signaling and DNA replication via pathways involving several cancer-related kinases and transcription factor E2F1. Further studies revealed that H2AFZ overexpression is regulated by TP53 mutation and led to an attenuation of rapid proliferation phenotype and aggressive behavior in HCC cells. Moreover, we found that H2AFZ was related to immune infiltrations and was co-expressed with immune checkpoint genes, including CD274 (PD-L1), CTLA-4, HAVCR2 (TIM3), LAG3, PDCD1 (PD-1), and TIGIT (VSIG9) in HCC, indicating that H2AFZ-overexpressed HCC patients may be sensitive to immune checkpoint blockades (ICBs). Integrated analysis suggested that H2AFZhigh/TP53mut patients had the shortest OS and PFS time, but most likely to respond to ICBs. These findings indicate that the H2AFZ possesses potential value as a novel prognostic indicator for HCC patients and is correlated with immune infiltration in HCC, laying a foundation for future study of HCC investigation and intervention.
Bladder cancer (BLCA) remains the leading cause of cancer‐related mortality among genitourinary malignancies worldwide. BLCA metastasis represents the primary reason for its poor prognosis. In this study, we report that decreased expression of partitioning defective 3 (Par3), a polarity protein (encoded by PARD3), is associated with tumor aggressive phenotypes and poor prognosis in BLCA patients. Consistently, ablation of Par3 promotes the metastasis and invasion of BLCA cells in vitro and in vivo. Further studies reveal that zinc finger protein Snail represses the expression of Par3 by binding to E2‐box (CAGGTG) of PARD3 promoter‐proximal. Inhibition of GSK‐3β promotes the expression and nuclear localization of Snail and then reduces the expression of Par3, resulting in the metastasis and invasion of BLCA cells. Moreover, we detected the interaction between Par3 (936‐1356 aa) and ZO‐1 (1372‐1748 aa), which is involved in the maintenance of tight junction. Together, our results demonstrate that the GSK‐3β/Snail/Par3/ZO‐1 axis regulates BLCA metastasis, and Snail is a major regulator for Par3 protein expression in BLCA.
Background: Hepatocellular carcinoma (HCC) is the most common pathological subtype of liver cancer and is the third leading cause of cancer death worldwide. Checkpoint kinase 1 (CHEK1), an essential serine/ threonine kinase that regulates the cell cycle, is reported to be associated with carcinogenesis. However, the biological role and clinical significance of CHEK1 in HCC are still incompletely known.Methods: In this research, CHEK1 messenger RNA (mRNA) levels in various liver hepatocellular carcinoma (LIHC) cohorts from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were evaluated. The Kaplan-Meier database was applied to identify the correlation between survival time and CHEK1 expression in patients with HCC. Gene set enrichment analysis (GSEA)was performed to explore the potential mechanism of CHEK1 in HCC, and NetworkAnalyst v. 3.0 (https:// www.networkanalyst.ca/) was used to construct the regulatory networks of CHEK1 in HCC. Discriminant Regulon Expression Analysis (DoRothEA) was used to detect the activity of transcriptional factors (TFs) in gene-enriched cells (EC) with CHEK1 coexpression. In vitro experiments were conducted to investigate the effects of CHEK1 on the biological function of HCC cells. Results: The CHEK1 mRNA level was overexpressed in HCC, and increased CHEK1 expression correlated with poor survival outcomes. The homo sapiens-microRNA-195 (hsa-miR-195) may have contributed to the upregulation of CHEK1 in HCC. GSEA and NetworkAnalyst v. 3.0 showed that CHEK1 played a crucial part in tumor proliferation of HCC and may be regulated by TF E2F1. DoRothEA showed increased transcriptional activity of E2F1 in gene-EC with CHEK1 coexpression. Moreover, experiments of cell function showed that the knockdown of CHEK1 weakened the aggressive behavior and proliferation of HCC cells. Overexpression of E2F1 increased the proliferation and invasion of HCC cells in vitro, while the silencing of CHEK1 dampened cell invasion induced by E2F1 overexpression. Conclusions: These results identified the prognostic significance and expression characteristics of CHEK1 in HCC through bioinformatics analysis and experimental verification. This lays the foundation for further research on the diagnosis and treatment of HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.