AS1411 is a quadruplex-forming oligonucleotide aptamer that targets nucleolin. It is currently in clinical trials as a treatment for various cancers. We have proposed that AS1411 inhibits cancer cell proliferation by affecting the activities of certain nucleolin-containing complexes. Here, we report that protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the formation of symmetrical dimethylarginine (sDMA), is a nucleolin-associated protein whose localization and activity are altered by AS1411. Levels of PRMT5 were found to be decreased in the nucleus of AS1411-treated DU145 human prostate cancer cells, but increased in the cytoplasm. These changes were dependent on nucleolin and were not observed in cells pretreated with nucleolin-specific small interfering RNA. Treatment with AS1411 altered levels of PRMT5 activity (assessed by sDMA levels) in accord with changes in its localization. In addition, our data indicate that nucleolin itself is a substrate for PRMT5 and that distribution of sDMA-modified nucleolin is altered by AS1411. Because histone arginine methylation by PRMT5 causes transcriptional repression, we also examined expression of selected PRMT5 target genes in AS1411-treated cells. For some genes, including cyclin E2 and tumor suppressor ST7, a significant up-regulation was noted, which corresponded with decreased PRMT5 association with the gene promoter. We conclude that nucleolin is a novel binding partner and substrate for PRMT5, and that AS1411 causes relocalization of the nucleolin-PRMT5 complex from the nucleus to the cytoplasm. Consequently, the nuclear activity of PRMT5 is decreased, leading to derepression of some PRMT5 target genes, which may contribute to the biological effects of AS1411. [Cancer Res 2007;67(21):10491-500]
Tumor-derived growth factors and cytokines stimulate neoangiogenesis from surrounding capillaries to support tumor growth. Recent studies have revealed that macrophage migration inhibitory factor (MIF) expression is increased in lung cancer, particularly non-small cell lung carcinomas (NSCLC). Because MIF has important autocrine effects on normal and transformed cells, we investigated whether autocrine MIF and its only known family member, d-dopachrome tautomerase (D-DT), promote the expression of proangiogenic factors CXCL8 and vascular endothelial growth factor in NSCLC cells. Our results demonstrate that the expression of CXCL8 and vascular endothelial growth factor are strongly reliant upon both the individual and cooperative activities of the two family members. CXCL8 transcriptional regulation by MIF and D-DT appears to involve a signaling pathway that includes the activation of JNK, c-jun phosphorylation, and subsequent AP-1 transcription factor activity. Importantly, HUVEC migration and tube formation induced by supernatants from lung adenocarcinoma cells lacking either or both MIF and D-DT are substantially reduced when compared with normal supernatants. Finally, we demonstrate that the cognate MIF receptor, CD74, is necessary for both MIF- and D-DT-induced JNK activation and CXCL8 expression, suggesting its potential involvement in angiogenic growth factor expression. This is the first demonstration of a biological role for D-DT, and its synergism with MIF suggests that the combined therapeutic targeting of both family members may enhance current anti-MIF-based therapies.
Chronic iron overload has slow and insidious effects on heart, liver, and other organs. Because iron-driven oxidation of most biologic materials (such as lipids and proteins) is readily repaired, this slow progression of organ damage implies some kind of biological "memory." We hypothesized that cumulative iron-catalyzed oxidant damage to mtDNA might occur in iron overload, perhaps explaining the often lethal cardiac dysfunction. Real time PCR was used to examine the "intactness" of mttDNA in cultured H9c2 rat cardiac myocytes. After 3-5 days exposure to high iron, these cells exhibited damage to mtDNA reflected by diminished amounts of near full-length 15.9-kb PCR product with no change in the amounts of a 16.1-kb product from a nuclear gene. With the loss of intact mtDNA, cellular respiration declined and mRNAs for three electron transport chain subunits and 16 S rRNA encoded by mtDNA decreased, whereas no decrements were found in four subunits encoded by nuclear DNA. To examine the importance of the interactions of iron with metabolically generated reactive oxygen species, we compared the toxic effects of iron in wild-type and rho o cells. In wild-type cells, elevated iron caused increased production of reactive oxygen species, cytostasis, and cell death, whereas the rho o cells were unaffected. We conclude that long-term damage to cells and organs in iron-overload disorders involves interactions between iron and mitochondrial reactive oxygen species resulting in cumulative damage to mtDNA, impaired synthesis of respiratory chain subunits, and respiratory dysfunction.Patients with primary or secondary iron overload are liable to cardiac and hepatic failure, and type II diabetes. Iron is required for the activity of numerous iron-and heme-containing proteins, but "free" (i.e. redox active) iron catalyzes the formation of highly toxic reactive oxygen species (ROS) 2 that damage lipids, proteins, and DNA (1). This damage is assumed to arise from iron-catalyzed hydroxyl radical formation or, perhaps more likely, iron-centered radicals such as ferryl and perferryl (2, 3). Iron-driven oxidation events require that the metal interact with cellular oxidizing and reducing equivalents such as superoxide and hydrogen peroxide, a major source of which is "leak" of electrons from the mitochondrial electron transport chain (4 -6).The present investigations were focused on the etiology of iron-mediated cardiac damage and specifically on the question of why, in patients with chronic iron overload, damage to organs such as the heart develops over a period of years, whereas most types of iron-mediated oxidation events can be repaired within minutes or hours. We have investigated the hypothesis that cumulative damage to DNA, specifically mtDNA, is critical to the slow development of cardiac dysfunction in chronic iron overload. In partial support of this idea, earlier studies clearly show that iron does promote DNA base oxidation as well as single and double strand DNA breaks. Mitochondrial DNA may be particularly vulnerable ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.