The Xiong’an New Area is one of the areas with the richest geothermal resources in the east-central part of China. However, the genesis of the geothermal water in Jixianian carbonate reservoirs in this area is still unclear. This study conducted systematical geochemical and isotopic analyses of the geothermal water in the Jixianian carbonate reservoirs in the Rongcheng geothermal field and summed up the genetic mechanisms of geothermal fluids in deep geothermal reservoirs. The results are as follows: the geothermal water in the study area has a hydrochemical type of Cl·HCO3-Na and originates from meteoric water in the Taihang Mountains. The age of the geothermal water increases from 22 ka in the west to 45 ka in the east, and its transport rate is approximately 1.02 m/a. The Sr concentration and 87Sr/86Sr ratio of the geothermal fluids increase along their runoff direction and are related to the dissolution and filtration of minerals such as dolomite and gypsum and the decay of 87Rb in the Earth’s crust. The geothermal water is involved in deep circulation and occurs in a closed system. These results are consistent with those obtained using the PHREEQC inverse model. The reverse hydrogeochemical simulation results exhibited the precipitation of gypsum and halite, the dissolution of anorthite and quartz, and desulfurization. The geothermal reservoir temperatures were estimated to be 92–113 °C using a SiO2 geothermometer, and the thermal groundwater may have undergone deep circulation, with a prolonged retention time. Moreover, the groundwater occurs in a closed environment, strong water-rock interactions occur between the groundwater and related minerals, and the groundwater absorbs the heat from the deep heat source, thus forming geothermal water.
In the Simao Basin in southwest China widely occur red beds of poor permeability. Nevertheless, more than 100 springs exist in the basin, some of which are hot springs with varying temperature. Hot springs contain abundant information on hydrogeochemical processes and groundwater circulation. In this study, hydrochemical and isotopic analyses and mixed models are used to examine the sources of recharge, heat, and solutes of the hot springs to better understand the subsurface processes and formation mechanisms of different hot springs in the basin. Three types of springs are found in the Simao Basin: springs of HCO3-Na type occur in the metamorphic rocks, springs of HCO3-Ca(Mg) and Cl-HCO3-Na-Ca types in the carbonate rocks, and springs of Cl(SO4)-SO4(Cl)-HCO3-Na(Ca) type in the red beds. Data of δ2H and δ18O indicate that the hot springs in the Simao Basin are meteoric in origin. Incongruent dissolution is the dominant process affecting the chemical compositions of the spring waters. The hydrochemical constituents of the hot springs in the metamorphic rocks, carbonate rocks, and red beds are influenced by the weathering of albite and the dissolution of carbonate, gypsum, anhydrite, and halite. The geothermal waters are mixed with shallow cold waters in their ascending processes, and the mixing ratios of cold water range from 58% to 94%. Due to the effect of mixing, the reservoir temperatures (51°C-127°C) calculated with the quartz geothermometer are regarded as the minimum reservoir temperatures. More reliable reservoir temperatures (91°C-132°C) are estimated with the fixed-Al method. The following mechanisms contribute to the formation of hot springs in the Simao Basin: the groundwater receives recharge from infiltration of precipitation and undergoes deep circulation, during which groundwater is heated by heat flow and incongruently dissolves the subsurface minerals and emerges in the form of hot springs along the permeable fracture or fault zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.