Background: Visual inputs are critical for locomotor navigation and sensorimotor integration in the elderly; however, the mechanism needs to be explored intensively. The present study assessed the gait pattern after cataract surgery to investigate the effects of visual restoration on locomotion. Methods: The prospective study recruited 32 patients (70.1 ± 5.2 years) with bilateral age-related cataracts in the Department of Ophthalmology at Peking University Third Hospital from October 2016 to December 2019. The temporal-spatial gait parameters and kinematic parameters were measured by the Footscan system and inertial measurement units. Paired t -test was employed to compare data normally distributed and Wilcoxon rank-sum test for non-normally distributed. Results: After visual restoration, the walking speed increased by 9.3% (1.19 ± 0.40 m/s vs. 1.09 ± 0.34 m/s, P =0.008) and exhibited an efficient gait pattern with significant decrease in gait cycle (1.02 ± 0.08 s vs. 1.04 ± 0.07 s, P =0.012), stance time (0.66 ± 0.06 s vs. 0.68 ± 0.06 s, P =0.045), and single support time (0.36 ± 0.03 s vs. 0.37 ± 0.02 s, P =0.011). High amplitude of joint motion was detected in the sagittal plane in the left hip (37.6° ± 5.3° vs. 35.5° ± 6.2°, P =0.014), left thigh (38.0° ± 5.2° vs. 36.4° ± 5.8°, P =0.026), left shank (71.9° ± 5.7° vs. 70.1° ± 5.6°, P =0.031), and right knee (59.1° ± 4.8° vs. 56.4° ± 4.8°, P =0.001). The motor symmetry of thigh improved from 8.35 ± 5.30% to 6.30 ± 4.73% ( P =0.042). Conclusions: The accelerated gait in response to visual restoration is characterized by decreased stance time and increased range of joint motion. Training programs for improving muscle strength of lower extremities might be helpful to facilitate the adaptation to these changes in gait.
ObjectiveThe aim of this study was to evaluate the effects of blurred vision on electrocortical activities at different levels during walking.Materials and methodsA total of 22 healthy volunteers (all men; mean age: 24.4 ± 3.9 years) underwent an electroencephalography (EEG) test synchronous with free level walking. Visual status was simulated by goggles covered by the occlusion foil targeted at a Snellen visual acuity of 20/60 (V0.3), 20/200 (V0.1), and light perception (V0). At each of these conditions, the participants completed barefoot walking for five blocks of 10 m. The EEG signals were recorded by a wireless EEG system with electrodes of interest, namely, Cz, Pz, Oz, O1, and O2. The gait performances were assessed by the Vicon system.ResultsDuring walking with normal vision (V1.0), there were cerebral activities related to visual processing, characterized as higher spectral power of delta (Oz and O2 vs. Cz, Pz, and O1, p ≤ 0.033) and theta (Oz vs. Cz and O1, p = 0.044) bands in occipital regions. Moderately blurred vision (V0.3) would attenuate the predominance of delta- and theta-band activities at Oz and O2, respectively. At the statuses of V0.1 and V0, the higher power of delta (at V0.1 and V0, Oz, and O2 vs. Cz, Pz, and O1, p ≤ 0.047) and theta bands (at V0.1, Oz vs. Cz, p = 0.010; at V0, Oz vs. Cz, Pz, and O1, p ≤ 0.016) emerged again. The cautious gait pattern, characterized by a decrease in gait speed (p < 0.001), a greater amplitude of deviation from the right ahead (p < 0.001), a prolonged stance time (p = 0.001), a restricted range of motion in the hip on the right side (p ≤ 0.010), and an increased knee flexion during stance on the left side (p = 0.014), was only detected at the status of V0. The power of the alpha band at the status of V0 was higher than that at V1.0, V0.3, and V0.1 (p ≤ 0.011).ConclusionMildly blurred visual inputs would elicit generalization of low-frequency band activity during walking. In circumstance to no effective visual input, locomotor navigation would rely on cerebral activity related to visual working memory. The threshold to trigger the shift might be the visual status that is as blurred as the level of Snellen visual acuity of 20/200.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.