Passive daytime radiative cooling (PDRC) involves spontaneously cooling a surface by reflecting sunlight and radiating heat to the cold outer space. Current PDRC designs are promising alternatives to electrical cooling but are either inefficient or have limited applicability. We present a simple, inexpensive, and scalable phase inversion–based method for fabricating hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene) [P(VdF-HFP)HP] coatings with excellent PDRC capability. High, substrate-independent hemispherical solar reflectances (0.96 ± 0.03) and long-wave infrared emittances (0.97 ± 0.02) allow for subambient temperature drops of ~6°C and cooling powers of ~96 watts per square meter (W m−2) under solar intensities of 890 and 750 W m−2, respectively. The performance equals or surpasses those of state-of-the-art PDRC designs, and the technique offers a paint-like simplicity.
The recent push for the “materials by design” paradigm requires synergistic integration of scalable computation, synthesis, and characterization. Among these, techniques for efficient measurement of thermal transport can be a bottleneck limiting the experimental database size, especially for diverse materials with a range of roughness, porosity, and anisotropy. Traditional contact thermal measurements have challenges with throughput and the lack of spatially resolvable property mapping, while non-contact pump-probe laser methods generally need mirror smooth sample surfaces and also require serial raster scanning to achieve property mapping. Here, we present structured illumination with thermal imaging (SI-TI), a new thermal characterization tool based on parallelized all-optical heating and thermometry. Experiments on representative dense and porous bulk materials as well as a 3D printed thermoelectric thick film (∼50 μm) demonstrate that SI-TI (1) enables paralleled measurement of multiple regions and samples without raster scanning; (2) can dynamically adjust the heating pattern purely in software, to optimize the measurement sensitivity in different directions for anisotropic materials; and (3) can tolerate rough (∼3 μm) and scratched sample surfaces. This work highlights a new avenue in adaptivity and throughput for thermal characterization of diverse materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.