A novel nonlinear observer‐based adaptive disturbance attenuation control strategy was proposed for a quarter semi‐active suspension system with a magneto‐rheological (MR) damper in light of the intrinsic nonlinearity, parameter uncertainty, state immeasurability and road randomness. Adaptive adjusting parameters were adopted to avoid the curve fitting and identification of the system parameters by a great deal of experimental data for shortening the development cycle of the control system. Based on the reduced‐order observer, the system states including the immeasurable virtual state of MR damper and inconveniently measured states of suspension system were estimated for the realistic frame of the proposed controller in practice. The dissipative system theory was utilized to reduce the influence of the road disturbance on the system control performance. Simulation results in the bump road and B‐class road indicate that, whether there are perturbations of the system parameters or not, the proposed control scheme always ensures a better performance on the suspension travel, ride comfort and handling stability in comparison with other existing methods.
This paper presents a novel idea processing the complex non-linear dynamics of a magneto-rheological (MR) damper and the external road disturbance based on the linear extended state observer (LESO) technology, and further verifies its reasonability by application of linear active disturbance rejection control (LADRC) in the quarter-car non-linear semi-active suspension system. In order to optimize the body acceleration and dynamic tyre load to improve the ride comfort and road-handling ability, a modified active disturbance rejection control, the double linear active disturbance rejection control (DLADRC), is further proposed based on the idea of the hybrid skyhook–groundhook control strategy. LESO is used to estimate the total disturbance including the external road disturbance and the internal non-linear dynamic of the MR damper. For effectiveness validation of the proposed control scheme, comparison results with the existing linear quadratic regulation (LQR) control, hybrid skyhook–groundhook control and adaptive control strategies are presented for the same quarter-car semi-active suspension. It is shown from the simulation comparisons among these several control strategies that the semi-active suspension system with DLADRC has a better control performance on the ride comfort and road-handling ability corresponding to the body acceleration and dynamic tyre load.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.