mutations are associated with an unfavourable clinical outcome in our Southeast Asian AML patient cohort. In particular, AML patients had the poorest prognosis.
Our laboratory-developed CEBNX workflow shows high coverage and thus overcomes the challenges associated with amplification efficiency and low coverage of Therefore, our assay is suitable for deployment in the clinical laboratory.
AimsMultiple myeloma (MM) is a heterogeneous disease characterised by genetically complex abnormalities. The classical mutational spectrum includes recurrent chromosomal aberrations and gene-level mutations. Recurrent translocations involving the IGH gene such as t(11;14), t(4;14) and t(14;16) are well known. However, the presence of complex genetic abnormalities raises the possibility that fusions other than the recurrent IGH translocations exist. We therefore employed a targeted RNA-sequencing panel to identify novel putative fusions in a local cohort of MM.MethodsTargeted RNA-sequencing was performed on 21 patient samples using the Illumina TruSight RNA Pan-Cancer Panel (comprising 1385 genes). Fusion calls were generated from the Illumina RNA-Sequencing Alignment software (V.1.0.0). These samples had conventional cytogenetic and fluorescence in situ hybridisation data for the common recurrent chromosomal abnormalities (t(11;14), t(4;14), t(14;16) and 17p13 deletion). The MMRF CoMMpass dataset was analysed using the TopHat-fusion pipeline.ResultsA total of 10 novel fusions were identified by the TruSight RNA Pan-Cancer Panel. Two of these fusions, HGF/CACNA2D1 and SMC3/MXI1, were validated by reverse transcription PCR and Sanger sequencing as they involve genes that may have biological relevance in MM genesis. Four of these (MAP2K4/MAP2K4P1) are likely to be spurious secondary to misalignment of reads to a pseudogene. One record of the HGF/CACNA2D1 fusion was identified from the MMRF CoMMpass dataset.ConclusionsThe identification of novel fusions offers insights into the biology of MM and might have clinical relevance. Further functional studies are required to determine the biological and clinical relevance of these novel fusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.