In iterative learning control (ILC), a common assumption is that the initial states in each repetitive operation should be inside a given ball centered at the desired initial states which may be unknown. This assumption is critical to the stability analysis, and the size of the ball will directly affect the final output trajectory tracking errors. In this paper, this assumption is removed by using an initial state learning scheme together with the traditional D-type ILC updating law. Both linear and nonlinear time-varying uncertain systems are investigated. Uniform bounds for the final tracking errors are obtained and these bounds are only dependent on the system uncertainties and disturbances, yet independent of the initial errors. Furthermore, the desired initial states can be identified through learning iterations.
For cold-start recommendation, it is important to rapidly profile new users and generate a good initial set of recommendations through an interview process -users should be queried adaptively in a sequential fashion, and multiple items should be offered for opinion solicitation at each trial. In this work, we propose a novel algorithm that learns to conduct the interview process guided by a decision tree with multiple questions at each split. The splits, represented as sparse weight vectors, are learned through an L1-constrained optimization framework. The users are directed to child nodes according to the inner product of their responses and the corresponding weight vector. More importantly, to account for the variety of responses coming to a node, a linear regressor is learned within each node using all the previously obtained answers as input to predict item ratings. A user study, preliminary but first in its kind in cold-start recommendation, is conducted to explore the efficient number and format of questions being asked in a recommendation survey to minimize user cognitive efforts. Quantitative experimental validations also show that the proposed algorithm outperforms state-of-the-art approaches in terms of both the prediction accuracy and user cognitive efforts.
Variations of deep neural networks such as convolutional neural network (CNN) have been successfully applied to image denoising. The goal is to automatically learn a mapping from a noisy image to a clean image given training data consisting of pairs of noisy and clean images. Most existing CNN models for image denoising have many layers. In such cases, the models involve a large amount of parameters and are computationally expensive to train. In this paper, we develop a dilated residual CNN for Gaussian image denoising. Compared with the recently proposed residual denoiser, our method can achieve comparable performance with less computational cost. Specifically, we enlarge receptive field by adopting dilated convolution in residual network, and the dilation factor is set to a certain value. We utilize appropriate zero padding to make the dimension of the output the same as the input. It has been proven that the expansion of receptive field can boost the CNN performance in image classification, and we further demonstrate that it can also lead to competitive performance for denoising problem. Moreover, we present a formula to calculate receptive field size when dilated convolution is incorporated. Thus, the change of receptive field can be interpreted mathematically. To validate the efficacy of our approach, we conduct extensive experiments for both gray and color image denoising with specific or randomized noise levels. Both of the quantitative measurements and the visual results of denoising are promising comparing with state-of-theart baselines.
This paper is concerned with the problem of the iterative learning control with current cycle feedback for a class of non-linear systems with well-defined relative degree. The tracking error caused by a non-zero initial shift is detected as extended D-type learning algorithm is applied. The defect is overcome by adding terms including the output error, its derivatives as well as integrals. Asymptotic tracking of the final output to the desired trajectory is guaranteed. As an alternative approach, an initial rectifying action is introduced in the extended D-type learning algorithm and shown effective to achieve the desired trajectory jointed smoothly with a transitional trajectory from the starting position. Also these algorithms with adjustable tracking interval ensure better robustness performance in the presence of initial shifts. Numerical simulation is conducted to demonstrate the theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.