Diamino protic ionic liquids (DPILs) possess a wide application prospect in the field of acid gas absorption. In this work, two representative DPILs, that is, dimethylethylenediamine 4-fluorophenolate ) and dimethylethylenediamine acetate ([DMEDAH][OAc]), which had been proved to display favorable CO 2 absorption performance in experiments, were selected. Based on the solvation model, the different mechanisms of CO 2 absorption by [DMEDAH] + cations combined with different anions were investigated using the dispersioncorrected density functional theory method. Above all, the possible active sites of the reaction between DPILs and CO 2 were analyzed by electrostatic potential (ESP) and electronegativity, and the transition states in each path were searched and verified by frequency calculation and intrinsic reaction coordinate calculation. Furthermore, the Gibbs free energy and reaction heat of each path were calculated, and the free energy barrier and enthalpy barrier diagrams were shown. It was found that the absorption path by the anion of [DMEDAH][4-F-PhO] was favorable in kinetics, while the absorption path by the cation was thermodynamically beneficial. In addition, [DMEDAH][OAc] only showed the possibility of cation absorption, and the mechanism of the transfer of active protons to weak acid anions and the formation of acetic acid molecules was more favorable. Moreover, through the structural analysis, bond order and bond energy calculation, ESP analysis of the ion pair absorption configuration, and comparison with the products of CO 2 absorbed by isolated ions, it was found that the interaction between anions/cations and CO 2 could weaken or enhance the interaction between anions and cations in different reaction steps. Hopefully, this study is helpful to understand the absorption mechanism of CO 2 by DPILs and provides a theoretical basis for the R&D of multi-active site functionalized ILs.
SummaryThe synthesis of a conformal poly(3,4-ethylenedioxythiophene) (PEDOT) layer on Si nanowires was demonstrated using a pulsed electrodeposition technique. N-type Si nanowire (SiNWs) arrays were synthesized using an electroless metal-assisted chemical etching technique. The dependence of the SiNW reflection on the concentration of the AgNO3 solution was identified. A reflection of less than 2% over the entire visible spectral range was obtained for these structures, evidencing their excellent antireflective properties. The etched SiNWs nanostructures can be further modified by using a tapering technique, which further preserves the strong light trapping effect. P-type PEDOT was grown on these SiNWs using electrochemical methods. Since the polymerization reaction is a very fast process with regards to monomer diffusion along the SiNW, the conformal deposition by classical, fixed potential deposition was not favored. Instead, the core–shell heterojunction structure was finally achieved by a pulsed deposition method. An extremely large shunt resistance was exhibited and determined to be related to the diffusion conditions occurring during polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.