Several clinical studies reported that Dickkopf1 (DKK1) plasma levels are correlated with atherosclerosis. However, the impact of DKK1 on the formation and vulnerability of atherosclerotic plaques remains elusive. This study investigated DKK1’s effects on enlargement and destabilization of plaques by targeting endothelial cells and assessing the possible cellular mechanisms involved. The effects of DKK1 on atherogenesis and plaque stability were evaluated in ApoE−/− mice using lentivirus injections to knockdown and knock-in the DKK1 gene. The presence of DKK1 resulted in enlarged and destabilized atherosclerotic lesions and increased apoptosis, while silencing of DKK1 alleviated plaque formation and vulnerability in the whole progression of atherosclerosis. DKK1 expression was upregulated in response to ox-LDL treatment in a time- and concentration-dependent manner on human umbilical vein endothelial cell (HUVEC). The interference of DKK1 reversed ox-LDL-induced apoptosis in HUVECs. The mechanism underlying this effect was DKK1’s activation of the JNK signal transduction pathway and inhibition of canonical Wnt signaling, following by activation of the IRE1α and eif2α/CHOP pathways. In conclusion, DKK1 promotes plaque formation and vulnerability partly by inducing apoptosis in endothelial cells, which partly through inducing the JNK-endoplasmic reticulum stress pathway and inhibiting canonical Wnt signaling.
In advanced atherosclerosis, a large number of necrotic core increases plaque vulnerability, which leads to the occurrence of acute atherothrombotic cardiovascular events. Macrophage apoptosis plays an important role in secondary necrosis. The present study aimed to examine and describe the effect of the traditional Chinese medication Tongxinluo (TXL) on macrophage apoptosis in advanced atherosclerotic plaques and to explore its mechanism. By observing the effect of TXL on ox-LDL-stimulated macrophage apoptosis, it was shown that TXL significantly inhibited ox-LDL-induced apoptosis of macrophages by enhancing autophagy. Therapeutic mechanism of TXL included increasing the expression of Beclin-1 and improving the dissociation of Bcl-2-Beclin-1 Complex. Apolipoprotein E knockout (apoE-/-) mice with a high fat diet were divided into four groups: saline group (Saline gavage), low dose TXL group (0.38 g/kg/d, gavage), medium dose TXL group (0.75 g/kg/day, gavage), and high dose TXL group (1.5 g/kg/day, gavage). 4 weeks after carotid-artery surgery, lentiviral of Beclin-1 silencing was injected through the tail vein. TXL treatment significantly reduced macrophage apoptosis dose-dependently and the result was blocked by Beclin-1 silencing. In addition, the increased Lc3b dots by TXL almost localized to macrophages in advanced atherosclerotic plaque. Compared with the same dose of TXL shBeclin-1 group, plaque area and vulnerability index of TXL groups decreased. The anti-apoptosis effects of TXL on atherosclerosis was related to the improvement of autophagy via Beclin-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.