Incentive mechanisms are central to the functionality of permissionless blockchains: they incentivize participants to run and secure the underlying consensus protocol. Designing incentive-compatible incentive mechanisms is notoriously challenging, however. Even systems with strong theoretical security guarantees in traditional settings, where users are either Byzantine or honest, often exclude analysis of rational users, who may exploit incentives to deviate from honest behavior. As a result, most public blockchains today use incentive mechanisms whose security properties are poorly understood and largely untested.In this work, we propose SquirRL, a framework for using deep reinforcement learning to identify attack strategies on blockchain incentive mechanisms. With minimal setup, SquirRL replicates known theoretical results on the Bitcoin protocol. In more complex and realistic settings, as when mining power varies over time, it identifies attack strategies superior to those known in the literature. Finally, SquirRL yields results suggesting that classical selfish mining attacks against Bitcoin lose effectiveness in the presence of multiple attackers. These results shed light on why selfish mining, which is unobserved to date in the wild, may be a poor attack strategy.
Incentive mechanisms are central to the functionality of permissionless blockchains: they incentivize participants to run and secure the underlying consensus protocol. Designing incentive-compatible incentive mechanisms is notoriously challenging, however. As a result, most public blockchains today use incentive mechanisms whose security properties are poorly understood and largely untested. In this work, we propose SquirRL, a framework for using deep reinforcement learning to analyze attacks on blockchain incentive mechanisms. We demonstrate SquirRL's power by first recovering known attacks: (1) the optimal selfish mining attack in Bitcoin [56], and (2) the Nash equilibrium in block withholding attacks [18]. We also use SquirRL to obtain several novel empirical results. First, we discover a counterintuitive flaw in the widely used rushing adversary model when applied to multi-agent Markov games with incomplete information. Second, we demonstrate that the optimal selfish mining strategy identified in [56] is actually not a Nash equilibrium in the multi-agent selfish mining setting. In fact, our results suggest (but do not prove) that when more than two competing agents engage in selfish mining, there is no profitable Nash equilibrium. This is consistent with the lack of observed selfish mining in the wild. Third, we find a novel attack on a simplified version of Ethereum's finalization mechanism, Casper the Friendly Finality Gadget (FFG) that allows a strategic agent to amplify her rewards by up to 30%. Notably, [12] shows that honest voting is a Nash equilibrium in Casper FFG; our attack shows that when Casper FFG is composed with selfish mining, this is no longer the case. Altogether, our experiments demonstrate SquirRL's flexibility and promise as a framework for studying attack settings that have thus far eluded theoretical and empirical understanding.
A new two‐constant theory for colour matching has been developed based on the Kubelka–Munk theory. Colorant formulations and algorithms for matching tristimulus, K/S and reflectance values of a standard are presented based on the new theory. The algorithms are suitable for a single‐constant theory as well as a two‐constant theory. The experimental data show that the recipes predicted by the new two‐constant theory are closer to the actual recipes of the standard sample than the recipes predicted by the single‐constant theory, and also show smaller colour difference values for some disperse dyes. The results show that the scattering of some disperse dyes cannot be negligible, and that the recipes that match to textiles coloured by these disperse dyes should be predicted using the new two‐constant theory.
We present vacuum filters, a type of data structures to support approximate membership queries. Vacuum filters cost the smallest space among all known AMQ data structures and provide higher insertion and lookup throughput in most situations. Hence they can be used as the replacement of the widely used Bloom filters and cuckoo filters. Similar to cuckoo filters, vacuum filters also store item fingerprints in a table. The memory-efficiency and throughput improvements are from the innovation of a table insertion and fingerprint eviction strategy that achieves both high load factor and data locality without any restriction of the table size. In addition, we propose a new update framework to resolve two difficult problems for AMQ structures under dynamics, namely duplicate insertions and set resizing. The experiments show that vacuum filters can achieve 25% less space in average and similar throughput compared to cuckoo filters, and 15% less space and >10x throughput compared to Bloom filters, with same false positive rates. AMQ data structures are widely used in various layers of computer systems and networks and are usually hosted in platforms where memory is limited and precious. Hence the improvements brought by vacuum filters can be considered significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.