Today, it has become a hot issue in cancer research to make precise prognostic prediction for breast cancer patients, which can not only effectively avoid overtreatment and medical resources waste, but also provide scientific basis to help medical staff and patients family members to make right medical decisions. As well known, cancer is a partly inherited disease with various important biological markers, especially the gene expression profile data and clinical data. Therefore, the accuracy of prediction model can be improved by integrating gene expression profile data and clinical data. In this paper, we proposed an end-to-end model, Attention-based Multi-NMF DNN (AMND), which combines clinical data and gene expression data extracted by Multiple Nonnegative Matrix Factorization algorithms (Multi-NMF) for the prognostic prediction of breast cancer. The innovation of this method is highlighted through using clinical data and combining multiple feature selection methods with the help of Attention mechanism. The results of comprehensive performance evaluation show that the proposed model reports better predictive performances than either models only using data of single modality, e.g., gene or clinical, or models based on any single NMF improved methods which only use one of the NMF algorithms to extract features. The performance of our model is competitive or even better than other previously reported models. Meanwhile, AMND can be extended to the survival prediction of other cancer diseases, providing a new strategy for breast cancer prognostic prediction.
The existence presence of rGO can affect the morphology of an Mn3O4/rGO composite, and the asymmetric supercapacitor cell created with this composite exhibits good capacitive performance.
Large volumes of spatio-temporal-thematic data being created using sites like Twitter and Jaiku, can potentially be combined to detect events, and understand various 'situations' as they are evolving at different spatio-temporal granularity across the world. Taking inspiration from traditional image pixels which represent aggregation of photon energies at a location, we consider aggregation of user interest levels at different geo-locations as social pixels. Combining such pixels spatio-temporally allows for creation of social images and video. Here, we describe how the use of relevant (media processing inspired) situation detection operators upon such 'images', and domain based rules can be used to decide relevant control actions. The ideas are showcased using a Swine flu monitoring application which uses Twitter data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.