Sickle cell disease (SCD) is characterized by a prothrombotic state. Plasminogen activator inhibitor-1 (PAI-1) is known to modulate fibrinolysis, lung injury/fibrosis, and angiogenesis. However, its role in SCD is less understood, and the molecular mechanisms underlying increased PAI-1 are unknown. Herein, we show a novel link between PAI-1 and sickle erythropoiesis. Plasma PAI-1 levels were high in SCD patients at steady state and in two humanized sickle mouse models, with increased PAI-1 immunolabeling in sickle mouse lung, bronchial epithelial cells, alveolar macrophages, and pulmonary microvascular endothelial cells. Placenta growth factor (PlGF), released at high levels by sickle erythroblasts, induced PAI-1 expression in primary human pulmonary microvascular endothelial cells and monocytes through activation of c-Jun N-terminal kinase (JNK), NADPH oxidase, and hypoxia-inducible factor-1␣ (HIF-1␣). Analysis of the human PAI-1 promoter revealed this induction was mediated by hypoxia-response element (HRE)-1, HRE-2, and distal activator protein (AP-1) sites. We also identify the involvement of c-Jun, c-Jun/c-Fos, and JunD, but not JunB, in binding with AP-1 sites of the PAI-1 promoter upon PlGF induction. Consistent with these findings, levels of PAI-1 were low in PlGF knock-out mice and sickle-PlGF knock-out mice; overexpression of PlGF in normal mice increased circulating PAI-1. In conclusion, we identify a novel mechanism of PAI-1 elevation in SCD.
Inflammation is a major contributor to the neuropathological consequences of traumatic brain injury (TBI). Previous studies have shown that proinflammatory complement activation fragments are present in the injured brain within the first 24 h after trauma. To investigate whether complement activation within the injured brain leads to the neuropathology and subsequent functional impairment associated with TBI, we examined what effect administration of a complement inhibitor, the vaccinia virus complement control protein (VCP), would have on spatial learning and memory in brain injured rats, as measured using the Morris Water Maze (MWM) procedure. Animals were subjected to a lateral fluid percussion brain injury of moderate severity and, 15 min later, received a 10-microL injection of either full-length VCP, a truncated version of VCP (VCPt), which lacks the complement inhibitory activity but retains the heparin binding activity of VCP, or saline directly into the cortex. Results of such intervention indicated that, at 2 weeks postinjury, both VCP and VCPt treatment attenuated impairments in spatial memory, but not neuropathological damage, as compared to the saline treated controls. These results were surprising and suggest that the neuroprotective effects following administration of VCP after acute brain injury are mediated by mechanisms other than complement inhibition. Potential mechanisms are discussed.
Diesel exhaust particles (DEP) have strong, selective Th2 adjuvant activity when inhaled with conventional Ags. We used a novel technique for measuring in vivo cytokine production to investigate possible mechanisms by which DEP might promote a Th2 response. Injection of DEP i.p. stimulated IL-6 secretion, but failed to increase IL-4, IL-10, or TNF-α secretion, and decreased basal levels of IFN-γ. When injected with or before LPS, DEP had little effect on the LPS-induced TNF-α responses, but partially inhibited the LPS-induced IL-10 response and strongly inhibited the LPS-induced IFN-γ response. DEP also inhibited the IFN-γ responses to IL-12, IL-12 plus IL-18, IL-2, and poly(I · C). DEP treatment had little effect on the percentages of NK and NKT cells in the spleen, but inhibited LPS-induced IFN-γ production by splenic NK and NKT cells. In contrast, DEP failed to inhibit the IFN-γ response by anti-CD3 mAb-activated NKT cells. Taken together, these observations suggest that DEP inhibit Toll-like receptor ligand-induced IFN-γ responses by interfering with cytokine signaling pathways that stimulate NK and NKT cells to produce IFN-γ. Our observations also suggest that DEP may promote a Th2 response by stimulating production of inflammatory cytokines while simultaneously inhibiting production of IFN-γ, and raise the possibility that the same mechanisms contribute to the association between DEP exposure and asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.