Learning 3D global features by aggregating multiple views has been introduced as a successful strategy for 3D shape analysis. In recent deep learning models with end-to-end training, pooling is a widely adopted procedure for view aggregation. However, pooling merely retains the max or mean value over all views, which disregards the content information of almost all views and also the spatial information among the views. To resolve these issues, we propose Sequential Views To Sequential Labels (SeqViews2SeqLabels) as a novel deep learning model with an encoder-decoder structure based on recurrent neural networks (RNNs) with attention. SeqViews2SeqLabels consists of two connected parts, an encoder-RNN followed by a decoder-RNN, that aim to learn the global features by aggregating sequential views and then performing shape classification from the learned global features, respectively. Specifically, the encoder-RNN learns the global features by simultaneously encoding the spatial and content information of sequential views, which captures the semantics of the view sequence. With the proposed prediction of sequential labels, the decoder-RNN performs more accurate classification using the learned global features by predicting sequential labels step by step. Learning to predict sequential labels provides more and finer discriminative information among shape classes to learn, which alleviates the overfitting problem inherent in training using a limited number of 3D shapes. Moreover, we introduce an attention mechanism to further improve the discriminative ability of SeqViews2SeqLabels. This mechanism increases the weight of views that are distinctive to each shape class, and it dramatically reduces the effect of selecting the first view position. Shape classification and retrieval results under three large-scale benchmarks verify that SeqViews2SeqLabels learns more discriminative global features by more effectively aggregating sequential views than state-of-the-art methods.
In this paper we present a novel unsupervised representation learning approach for 3D shapes, which is an important research challenge as it avoids the manual effort required for collecting supervised data. Our method trains an RNN-based neural network architecture to solve multiple view inter-prediction tasks for each shape. Given several nearby views of a shape, we define view inter-prediction as the task of predicting the center view between the input views, and reconstructing the input views in a low-level feature space. The key idea of our approach is to implement the shape representation as a shape-specific global memory that is shared between all local view inter-predictions for each shape. Intuitively, this memory enables the system to aggregate information that is useful to better solve the view inter-prediction tasks for each shape, and to leverage the memory as a view-independent shape representation. Our approach obtains the best results using a combination of L2 and adversarial losses for the view inter-prediction task. We show that VIP-GAN outperforms state-of-the-art methods in unsupervised 3D feature learning on three large scale 3D shape benchmarks.
Jointly learning representations of 3D shapes and text is crucial to support tasks such as cross-modal retrieval or shape captioning. A recent method employs 3D voxels to represent 3D shapes, but this limits the approach to low resolutions due to the computational cost caused by the cubic complexity of 3D voxels. Hence the method suffers from a lack of detailed geometry. To resolve this issue, we propose Y 2 Seq2Seq, a view-based model, to learn cross-modal representations by joint reconstruction and prediction of view and word sequences. Specifically, the network architecture of Y 2 Seq2Seq bridges the semantic meaning embedded in the two modalities by two coupled "Y" like sequence-to-sequence (Seq2Seq) structures. In addition, our novel hierarchical constraints further increase the discriminability of the cross-modal representations by employing more detailed discriminative information. Experimental results on cross-modal retrieval and 3D shape captioning show that Y 2 Seq2Seq outperforms the state-of-the-art methods.
Azimuth multichannel (AMC) synthetic aperture radar (SAR), which contains multiple receiving antennas along the azimuth, can prevent the minimum antenna area constraint and provide high-resolution and wide-swath (HRWS) SAR images. Channel calibration and along-track baseline estimation are important topics in an AMC SAR system, since they have a great impact on image quality. Based on the signal model for stationary target of AMC SAR, this paper first analyses the influence of the along-track baseline and channel imbalances on SAR images by simulation. Then, a novel method to simultaneously estimate the along-track baseline, phase imbalance and range sample time imbalance (RSTI) based on the azimuth cross-correlation in the two-dimensional frequency domain is addressed. In addition, with the help of simulations and real data acquired by Gaofen-3 (GF-3), the effectiveness of this method is verified by comparing with some existing methods. Finally, this paper analyzes the estimation accuracy of this method under different scenarios and signal-to-noise ratios (SNRs), and points out the direction for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.