The development of next-generation electronics is much dependent on the discovery of materials with exceptional surface-state spin and valley properties. Because of that, bismuth has attracted a renewed interest in recent years. However, despite extensive studies, the intrinsic electronic transport properties of Bi surfaces are largely undetermined due to the strong interference from the bulk. Here we report the unambiguous determination of the surface-state Landau levels in Bi (111) ultrathin films using scanning tunnelling microscopy under magnetic fields perpendicular to the surface. The Landau levels of the electron-like and the hole-like carriers are accurately characterized and well described by the band structure of the Bi (111) surface from density functional theory calculations. Some specific surface spin states with a large g-factor are identified. Our findings shed light on the exploiting surface-state properties of Bi for their applications in spintronics and valleytronics.
The existence of various quasiparticles of polarons because of electron−boson couplings plays important roles in determining electron transport in titanium dioxide (TiO 2 ), which affects a wealth of physical properties from catalysis to interfacial superconductivity. In addition to the well-defined Froḧlich polarons whose electrons are dressed by the phonon clouds, it has been theoretically predicted that electrons can also couple to their own plasmonic oscillations, namely, the plasmonic polarons.Here we experimentally demonstrate the formation of plasmonic polarons in highly doped anatase TiO 2 using angle-resolved photoemission spectroscopy. Our results show that the energy separation of plasmon-loss satellites follows a dependence on √n, where n is the electron density, manifesting the characteristic of plasmonic polarons. The spectral functions enable to quantitatively evaluate the strengths of electron−plasmon and electron− phonon couplings, respectively, providing an effective approach for characterizing the interplays among different bosonic modes in the complicate many-body interactions.
Folding can be an effective way to tailor the electronic properties of graphene and has attracted wide study interest in finding its novel properties. Here we present the experimental characterizations of the structural and electronic properties of a narrow graphene wrinkle on a SiO 2 /Si substrate using scanning tunneling microscopy/spectroscopy. Pronounced and nearly equally separated conductance peaks are observed in the dI/dV spectra of the wrinkle. We attribute these peaks to pseudo-Landau levels (PLLs) that are caused by a gradient-strain-induced pseudomagnetic field up to about 42 T in the narrow wrinkle. The introduction of the gradient strain and thus the pseudomagnetic field can be ascribed to the lattice deformation. A doublyfolded structure of the wrinkle is suggested. Our density functional theory calculations show that the band structure of the doubly folded graphene wrinkle has a parabolic dispersion, which can well explain the equally separated PLLs. The effective mass of carriers is obtained to be about 0.02m e (m e : the rest mass of electron), and interestingly, it is revealed that there exists valley polarization in the wrinkle. Such properties of the strained doubly folded wrinkle may provide a platform to explore some exciting phenomena in graphene, like zero-field quantum valley Hall effect.
The formation of the Dirac nodal line (DNL) requires intrinsic symmetry that can protect the degeneracy of continuous Dirac points in momentum space. Here, as an alternative approach, we propose an extrinsic symmetry protected DNL. On the basis of symmetry analysis and numerical calculations, we establish a general principle to design the nonsymmorphic symmetry protected 4-fold degenerate DNL against spin−orbit coupling in the nanopatterned 2D electron gas. Furthermore, on the basis of experimental measurements, we demonstrate the approximate realization of our proposal in the Bi/Cu(111) system, in which a highly dispersive DNL is observed at the boundary of the Brillouin zone. We envision that the extrinsic symmetry engineering will greatly enhance the ability for artificially constructing the exotic topological bands in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.