In this paper, an oblique aperture ridge waveguide operating at 2450 MHz is proposed, and, using the ridge waveguide, a permittivity measurement system is constructed which can measure the permittivity of materials during microwave heating. The system calculates the amplitudes of the scattering parameters by using the forward, reflected and transmitted powers of the power meters, and it reconstructs the permittivity of the material by combining the scattering parameters with an artificial neural network. The system is used to measure the complex permittivity of mixed solutions of methanol and ethanol with different ratios at room temperature, and the permittivity of methanol and ethanol with increasing temperature, from room temperature to 50 °C. The measured results are in good agreement with the reference data. The system allows simultaneous measurement of the permittivity with microwave heating and provides real-time, rapid changes in the permittivity during heating, avoiding thermal runaway and providing a reference for applications of microwave energy in the chemical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.