T cell activation and immune function are regulated by costimulatory molecules of the B7 superfamily. Human B7-H3 is a recent addition to this family and has been shown to mediate T cell proliferation and IFN-γ production. In this work we describe the identification of the mouse B7-H3 homolog, which is ubiquitously expressed in a variety of tissues. Activated CD4 and CD8 T cells express a putative receptor that can be recognized by soluble mouse B7-H3-Ig molecules. While the mouse B7-H3 gene was found to contain a single copy, we discovered a novel isoform of human B7-H3 (named as B7-H3b hereafter) with four Ig-like domains that results from gene duplication and differential splicing. B7-H3b is the major isoform expressed in several tissues. This structural information suggests a genetic variation of the B7-H3 gene in mammalian species.
HSCs either self-renew or differentiate to give rise to multipotent cells whose progeny provide blood cell precursors. However, surprisingly little is known about the factors that regulate this choice of self-renewal versus differentiation. One candidate is the Notch signaling pathway, with ex vivo studies suggesting that Notch regulates HSC differentiation, although a functional role for Notch in HSC self-renewal in vivo remains controversial. Here, we have shown that Notch2, and not Notch1, inhibits myeloid differentiation and enhances generation of primitive Sca-1 + c-kit + progenitors following in vitro culture of enriched HSCs with purified Notch ligands. In mice, Notch2 enhanced the rate of formation of short-term repopulating multipotential progenitor cells (MPPs) as well as long-term repopulating HSCs, while delaying myeloid differentiation in BM following injury. However, consistent with previous reports, once homeostasis was achieved, neither Notch1 nor Notch2 affected repopulating cell self-renewal. These data indicate a Notch2-dependent role in assuring orderly repopulation by HSCs, MPPs, myeloid cells, and lymphoid cells during BM regeneration.
Recent evidence shows that many molecules of the TNF family serve as counter-receptors, inducing costimulation through reverse signals in addition to delivering signals through their respective TNF receptors. In this review, we will discuss this new class of costimulators with a focus on the mechanism of costimulation transduced by reverse signaling through Fas ligand.
Productive T cell activation generally requires costimulation in addition to a signal delivered through the TCR. Although FasL is well-characterized for its capacity to deliver a death signal through Fas, this TNF family member can also transmit a reverse signal to enhance Ag-driven T cell proliferation. In this study, we define this reverse signal through FasL as costimulation by showing it requires TCR coengagement and is CD28 independent. We demonstrate that FasL-mediated costimulation drives FasL recruitment into lipid rafts and association with select Src homology 3 (SH3)-containing proteins. We further show that the proline-rich intracellular domain of FasL is sufficient to costimulate by enhancing the phosphorylation of Akt, ERK1/2, JNK, and FasL itself, by activating the transcription factors NFAT and AP-1, and by enhancing IFN-γ production. These results elucidate the pathway of costimulation through the death inducer FasL, and comprise the first mechanistic analysis of a newly emerging group of costimulators, the TNF family.
The cytoplasmic domain of Fas ligand is sufficient to costimulate CD8+ T cells by driving Fas ligand recruitment into lipid rafts and association with select Src homology 3-containing proteins, activating PI3K and MAPK pathways, mediating nuclear translocation of the transcription factors NFAT and AP-1, and enhancing IFN-γ production and Ag-specific CD8+ T cell proliferation. We now show that Fas ligand molecules lacking amino acids 45–54 in the proline-rich region of the cytoplasmic domain fail to costimulate but serve as effective death inducers. Death induction and costimulation by Fas ligand are therefore clearly separable functions. Further, upon Fas ligand-mediated costimulation, casein kinase I phosphorylates Fas ligand, in which two conserved casein kinase I binding sites regulate NFAT activation and costimulation. These results help resolve how one molecule can serve as a double-edged immunomodulator by directing discrete biological consequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.