Betaine (BET) is a native compound widely studied as an antioxidant in agriculture and human health. However, the antioxidant mechanism of BET remains unclear. In this research, radical scavenging assays showed that BET had little free radical scavenging activity. However, the antioxidant activity of BET was confirmed by cellular antioxidant activity (CAA) and erythrocyte hemolysis assays. The results of quantitative PCR (qPCR) and enzyme activity determination kits showed that the antioxidant activity of BET was not due to the gene expression and activity of antioxidases. High-pressure liquid chromatography (HPLC) assessment of the effect of BET on sulfur-containing amino acid metabolism showed that BET increased the levels of nonenzymatic antioxidants,S-adenosylmethionine (SAM) and methionine (p < 0.05), via the regulation of the methionine-omocysteine cycle. Additionally, the three methyl groups of BET were found to play a key role in its antioxidant activity. The possible reason was that because of the hydrophobicity of the three methyl groups and hydrophilicity of the carboxyl of BET, a tight protective membrane was formed around cells to prevent oxidative stress inducer from inducing ROS generation and cell damage. In conclusion, the antioxidant mechanism of BET was found to enhance nonenzymatic antioxidant defenses via the methionine-homocysteine cycle and form a protective membrane around cells.
Eukaryotic elongation factor-2 kinase (eEF-2K), a negative regulator of protein synthesis, has been shown to play an important role in modulating autophagy and apoptosis in tumor cells under various stresses. In this study, we investigated the regulatory role of eEF-2K in pyroptosis (a new form of programmed necrosis) in doxorubicin-treated human melanoma cells. We found that doxorubicin (0.5-5 μmol/L) induced pyroptosis in melanoma cell lines SK-MEL-5, SK-MEL-28, and A-375 with high expression of DFNA5, but not in human breast cancer cell line MCF-7 with little expression of DFNA5. On the other hand, doxorubicin treatment activated autophagy in the melanoma cells; inhibition of autophagy by transfecting the cells with siRNA targeting Beclin1 or by pretreatment with chloroquine (20 μmol/L) significantly augmented pyroptosis, thus sensitizing the melanoma cells to doxorubicin. We further demonstrated that doxorubicin treatment activated eEF-2K in the melanoma cells, and silencing of eEF-2K blunted autophagic responses, but promoted doxorubicin-induced pyroptotic cell death. Taken together, the above results demonstrate that eEF-2K dictates the cross-talk between pyroptosis and autophagy in doxorubicin-treated human melanoma cells; suppression of eEF-2K results in inhibiting autophagy and augmenting pyroptosis, thus modulating the sensitivity of melanoma cells to doxorubicin, suggesting that targeting eEF-2K may reinforce the antitumor efficacy of doxorubicin, offering a new insight into tumor chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.