In order to provide a theoretical basis for the design of underground shaft coal pocket and support parameters in coal mines, a mechanical model and a dynamic analysis of the silo wall are established based on the engineering background of Ganhe Coal Mine. The numerical calculation is carried out by using the new model. The back analysis of the silo wall damage in the actual project is carried out, and the deformation law and fracture mechanism of the silo wall affected by different lateral pressure coefficients are analyzed and studied research. Based on the Mohr–Coulomb strength criterion, five sets of orthogonal simulation experiments were carried out for lateral pressure coefficients of 0.6, 0.8, 1.0, 1.2, and 1.4, respectively. The results show that the lateral pressure coefficient is the main factor affecting the deformation of the silo wall, the radial displacement of the silo wall increases gradually with the increase of the lateral pressure coefficient, and the displacement follows the quadratic polynomial function distribution. The maximum tensile stress area of the silo wall is located in the middle and lower part of the shaft coal pocket, which better explains the engineering phenomenon that the actual fracture location of the silo wall is mostly concentrated in the middle and lower part of the underground shaft coal pocket. The targeted repair technology can be used for reference in engineering.
To explore the variations of the loading, deformation, and loss and to determine the mechanical state, loss characteristics, and stability for the shaft coal pocket wall in coal mines under a dynamic-static load, this paper innovatively attempts to conduct a three-dimensional physical similarity test of a transparent material shaft coal pocket, as well as the experiments of loading and unloading coal in the shaft coal pocket using different bulk storage materials 80 times. Then, the deformation, pressure, the surrounding rock, and the flow pattern of the silo wall were discussed considering the existence of the warehouse wall support. The characteristics of shaft wall deformation and surrounding rock stress cracks during the unloading were analyzed with the help from multiple integrated test systems such as strain gauges, pressure sensors, borehole peeps, and other comprehensive test systems. The results indicated that different dispersion particles have a significant impact on the strain of the shaft wall. When using the coal particles as storage materials, the overpressure coefficient of the shaft wall is up to 1.95 times higher than using dry sand particles. The particle size and internal friction angle of the bulk particles impact significantly on the deformation of the wall, where the cohesive force among the dispersed particles produced by the compaction effect has a certain influence on the side pressure of the silo wall. During the unloading process, coal particles were easier to obtain an arching phenomenon than dry sand particles. In addition, the number of bulk arching could be significantly reduced under the conditions of the warehouse wall support. The “weak rock stratum” in the surrounding rock plays a major role in controlling the deformation and failure development of the shaft wall. The three-dimensional physical simulation experiment of the transparent shaft wall truly reproduces the field engineering practice, and the physical simulation results are verified by numerical simulation analysis.
In order to obtain the flow trend of particles in the shaft coal pocket, Lay a foundation for the research on the stability of shaft coal pocket wall in coal mine. The flow trend of particles in the process both coal unloading and sand unloading is studied. The study methods are used by physical similarity simulation and numerical simulation experiment. The results show that the loose particles are divided into “three zones” in the longitudinal direction. As a whole, the particles in the shaft coal pocket is characterized by “two circles” which is the axis area and the bunker wall area. The better fluidity in the core, but the worse fluidity close to the bunker wall. The flow trend of the particles in the middle warehouse is as follows: the particles in the smooth passage in the central area flow out first. After flow out, the particles in this area will be filled by the particles in its upper area, then the outflow continues, the loose particles in the outer area of the middle flow out last. The particle flow trend in the natural flow area under the bearing structure is as follows: the loose particles in the funnel under the structure flow out according to the natural state. Due to the protection of its upper conical shell structure, the pressure of loose particles in this area are smaller than the upper area. which shown random natural outflow when coal outflow. The flow trend of bulk in the silo is basically consistent with the experimental results of numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.