Measuring gene expression in individual cells is crucial for understanding the gene regulatory network controlling human embryonic development. Here we apply single-cell RNA sequencing (RNA-Seq) analysis to 124 individual cells from human preimplantation embryos and human embryonic stem cells (hESCs) at different passages. The number of maternally expressed genes detected in our data set is 22,687, including 8,701 long noncoding RNAs (lncRNAs), which represents a significant increase from 9,735 maternal genes detected previously by cDNA microarray. We discovered 2,733 novel lncRNAs, many of which are expressed in specific developmental stages. To address the long-standing question whether gene expression signatures of human epiblast (EPI) and in vitro hESCs are the same, we found that EPI cells and primary hESC outgrowth have dramatically different transcriptomes, with 1,498 genes showing differential expression between them. This work provides a comprehensive framework of the transcriptome landscapes of human early embryos and hESCs.
To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS) including 26,488 cases and 83,964 controls of European, East Asian, South Asian, and Mexican and Mexican American ancestry. We observed significant excess in directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven novel T2D susceptibility loci. Furthermore, we observed considerable improvements in fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterisation of complex trait loci, and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.
Highlights Deterministic barcoding in tissue enables NGS-based spatial multi-omics mapping. DBiT-seq identified spatial patterning of major tissue types in mouse embryos. DBiT-seq revealed fine features such as retinal pigmented epithelium and microvascular endothelium at the cellular level. Direct integration with scRNA-seq data allows for rapid cell type identification.
We carried out a genome wide association study of type-2 diabetes (T2D) amongst 20,119 people of South Asian ancestry (5,561 with T2D); we identified 20 independent SNPs associated with T2D at P<10−4 for testing amongst a further 38,568 South Asians (13,170 with T2D). In combined analysis, common genetic variants at six novel loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2 and HNF4A) were associated with T2D (P=4.1×10−8 to P=1.9×10−11); SNPs at GRB14 were also associated with insulin sensitivity, and at ST6GAL1 and HNF4A with pancreatic beta-cell function respectively. Our findings provide additional insight into mechanisms underlying T2D, and demonstrate the potential for new discovery from genetic association studies in South Asians who have increased susceptibility to T2D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.