Lowering the temperature of the road surface is one efficient way to alleviate the urban heat island effect. Therefore water-retaining asphalt mixture was produced by adding super absorbent polymer (SAP) containing cement mortar to the porous asphalt mixture. In this study, the water absorption capacity, mechanical strength and fluidity of the cured water-retaining mortar were investigated to determine the optimum SAP dosage in water-retaining mortar. Furthermore, the microstructure of the hardened water-retaining mortar was studied using scanning electron microscopy (SEM) to determine the morphology and distribution of SAP in the final product, which may help to understand the influence of SAP on water retention performance and decipher its underlying mechanism. Compared to the raw porous asphalt mixture, the water-retaining asphalt mixture showed good moisture susceptibility (retained stability (RS) ≥ 88.2%, tensile strength ratio (TSR) ≥ 81.8%), good rutting resistance (9336–10,552 times/mm) and low temperature crack resistance (3383–3621 MPa), as well as significant cooling effects (10–12 °C). The results illustrate that the prepared SAP water-retaining asphalt mixture has good potential in reducing dust and enhancing road performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.