Abstract-This paper presents a hybrid scheme for fast calculation on the bistatic composite scattering from electrically very large ship-sea geometry at high frequencies. Based on the Kirchhoff approximation (KA), we try to break the large-scale sea surface into myriads of plane facets, then derive the Kirchhoff integration analytically on each individual discretized facet. The analytical expression obtained, socalled the "facet-based Kirchhoff approximation (FBKA)", is suitable for a quick scattering calculation on the electrically very large sea surface, since it is beyond the intensively refined meshes as the usual Monte Carlo implementation does. Meanwhile, combined with graphical electromagnetic computing method (GRECO) to extract the illuminated and shadow facets in accordance with the incident direction, the conventional physical optics method (PO) is improved by employing current marching technique (CMT) to calculate the currents in the shadow region. The shadow-corrected GRECO is presented in this hybrid model to solve the bistatic scattering from complex and very electrically large perfectly electric conducting (PEC) objects. The accuracy of the shadow-corrected GRECO is confirmed well by exact numerical methods, especially at large scattering angles. The electromagnetic interactions between the ship and sea surface are estimated by the famous "four-path model", which has been proved to be valid for ship scattering at relatively calm sea state. Several numerical examples have been presented to demonstrate the efficiency and accuracy of the proposed hybrid method.
A demonstrated hybrid method based on the combination of half-space physical optics method (PO), graphical-electromagnetic computing (GRECO), and Monte Carlo method on echo signals from low-flying targets based on actual environment for airborne radar is presented in this paper. The half-space physical optics method , combined with the graphical-electromagnetic computing (GRECO) method to eliminate the shadow regions quickly and rebuild the target automatically, is employed to calculate the radar cross section (RCS) of the conductive targets in half space fast and accurately. The direct echo is computed based on the radar equation. The reflected paths from sea or ground surface cause multipath effects. In order to accurately obtain the echo signals, the phase factors are modified for fluctuations in multipath, and the statistical average value of the echo signals is obtained using the Monte Carlo method. A typical simulation is performed, and the numerical results show the accuracy of the proposed method.
Inspired by the natural phenomena that rough sea surfaces often mask the ship target when the wind comes big, or another case in point, vehicles can usually hide themselves in the mountains with dense vegetation. Here in this paper, we demonstrate a practical strategy of hiding by using gradient-index meta-surfaces based on the quasi-conformal transformation optics. Different from the prevalent choice of the invisible cloak to virtually extinguish an object that is wrapped inside, our approach aims to suppress the detectability of the target through creating diffuse reflections by proposing the camouflage meta-surface underneath. Our design, possessing a flat and slim profile with solely a few randomly distributed dielectrics on a metallic sheet, can readily offer the perfect cover to mask the hiding object adjacently above in a broad frequency range.
This paper focuses on improving the understanding of the electromagnetic (EM) scattering from water waves modulated by shoaling effect arising from different upslope submarine topography in the nearshore zone. Simulation of EM bistatic scattering from water waves in the nearshore zone where the water depth becomes gradually shallower is presented. The shallow water waves with periodic sinusoidal type are simulated by the model that is based on Boussinesq approximation theory, which can accurately construct the detailed wave structure in the nearshore zone, and the analytical model-the second-order small slope approximation is applied to modeling the EM bistatic scattering from the shallow water waves. Comparisons of the bistatic scattering coefficient (BSC) between water waves corresponding to different submarine plane-upslope topography in the nearshore zone have shown that the angular position of harmonics of BSC will change as upslope varies: higher-order harmonics for plane-upslope cases would be far away from the specular peaks for flat topography case. Moreover, the wave height of the shallow water waves and nonlinear effect will greatly impact changing trend of the BSC. Simulations for TMA spectrum-based water waves also support the fact that the transfer of wave energy from low frequency to higher frequency wave components would be intensified in the shallow water zone with the upslope submarine topography. The results in this paper indicate that shallow water waves would reflect some interesting scattering features that traditional deep-sea waves didn't show, which will be helpful to the further quantitative investigation of scattering characteristics of nearshore waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.