Endometrial cancer (EC) is a gynecological malignant tumor characterized by high incidence. EC occurrence and development are regulated by numerous molecules and signal pathways. There is a need to explore key regulatory molecules to identify potential therapeutic targets to reduce the incidence of EC. Treatment by targeting a single molecule is characterized by poor efficacy owing to the development of resistance and significant side effects. The current study explored potential candidates in EC by integrating bioinformatics analysis and in vivo and in vitro experimental validation to circumvent the limitation of low efficacy of currently used molecules. Molecular dynamics simulations provide details at the molecular level of intermolecular regulation. In the current study, MLLT11 and TRIL were identified as important regulatory molecules in EC. The two molecules formed a heteromultimer by binding to AKT protein, which induced its phosphorylation of threonine at position 308. Ultimately, the complex stimulates PI3K/AKT/mTOR signaling pathway, a pivotal pathway in tumors. The findings of the current study show a novel complex, MLLT11-TRIL, which can act as AKT protein agonist, thus inducing activity of PI3K/AKT/mTOR signaling pathway. Targeting MLLT11 and TRIL simultaneously, or blocking the formation of the MLLT11-TRIL complex, can abrogate progression of EC.
Curcumin, a natural organic component obtained from Curcuma longa’s rhizomes, shows abundant anti-tumor, antioxidant and anti-inflammatory pharmacological activities, among others. Notably the anti-tumor activity has aroused widespread attention from scholars worldwide. Numerous studies have reported that curcumin can delay ovarian cancer (OC), increase its sensitivity to chemotherapy, and reduce chemotherapy drugs’ side effects. It has been shown considerable anticancer potential by promoting cell apoptosis, suppressing cell cycle progression, inducing autophagy, inhibiting tumor metastasis, and regulating enzyme activity. With an in-depth study of curcumin’s anti-OC mechanism, its clinical application will have broader prospects. This review summarizes the latest studies on curcumin’s anti-OC activities, and discusses the specific mechanism, hoping to provide references for further research and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.