A high level of serum alpha fetoprotein (AFP) is positively associated with human hepatocellular carcinoma (HCC) carcinogenesis and metastasis; however, the function of AFP in HCC metastasis is unknown. This study has explored the effects of AFP on regulating metastatic and invasive capacity of human HCC cells. Forty‐seven clinical patients' liver samples were collected and diagnosed; HCC cells line, Bel 7402 cells (AFP‐producing) and liver cancer cell line cells (non‐AFP‐producing) were selected to analyse the role of AFP in the metastasis of HCC cells. The results indicated that high serum concentration of AFP was positively correlated with HCC intrahepatic, lymph nodes and lung metastasis. Repressed expression of AFP significantly inhibited the capability of migration and invasion of Bel 7402 cells, expression of keratin 19 (K19), epithelial cell adhesion molecule (EpCAM), matrix metalloproteinase 2/9 (MMP2/9) and CXC chemokine receptor 4 (CXCR4) were also down‐regulated in Bel 7402 cells; migration and invasion, expression of K19, EpCAM, MMP2/9 and CXCR4 were significantly enhanced when HLE cells were transfected with AFP‐expressed vector. The results demonstrated that AFP plays a critical role in promoting metastasis of HCC; AFP promoted HCC cell invasion and metastasis via up‐regulating expression of metastasis‐related proteins. Thus, AFP may be used as a novel therapeutic target for treating HCC patients.
Alpha-fetoprotein (AFP) has been recognized as a key regulator of cell proliferation in hepatocellular carcinoma (HCC). However, whether AFP functions in cancer cell autophagy remains unknown. This study investigated the effects of AFP on autophagy in HCC cells. The role of AFP was studied in two HCC cell lines, PLC/PRF/5 and HLE. Cell autophagy, apoptosis, proliferation, migration and invasion were analysed with Western blotting, co-immunoprecipitation (CoIP), immunofluorescence, animal models, MTT assays, flow cytometry (FCM), Cell Counting Kit (CCK)-8, and scratch and transwell assays. In PLC/PRF/5 cells, AFP interacted with PTEN and activated PI3K/Akt/mTOR signalling. In HLE cells, overexpressed AFP similarly interacted with PTEN, leading to PI3K/Akt/mTOR activation and reduced cell autophagy. When AFP was silenced in PLC/PRF/5 cells, cell proliferation, tumour growth, migration and invasion were inhibited, and the numbers of S-phase and apoptotic cells were increased. In contrast, AFP overexpression in HLE cells enhanced cell proliferation, migration and invasion and reduced apoptosis. AFP-dependent autophagy, proliferation, migration and apoptosis were inhibited by rapamycin. In summary, AFP plays critical roles in the inhibition of autophagy and apoptosis in HCC cells and promotes proliferation, migration and invasion. The role of AFP in autophagy inhibition in HCC cells may involve the activation of PI3K/Akt/mTOR signalling.
Background Recent evidences indicated that some local anaesthetic agents played a role in inhibiting the proliferation of cancer cells; Whether ropivacaine is able to promote apoptosis of hepatocellular carcinoma (HCC) cells is still unclear. The aim of this study was to investigate the effect of ropivacaine on the apoptosis of HCC cells. Methods In the present study, we treated the HCC cell lines, Bel7402 and HLE with ropivacaine. MTT, DAPI stain, trypan blue exclusion dye assay, flow cytometry, electron microscopy, computational simulation, laser confocal microscope, Western blotting, and enzyme activity analysis of caspase-3 were applied to detect the growth and apoptosis of HCC cells and to explore the role mechanism of ropivacaine. Results Ropivacaine was able to inhibit proliferation and promote apoptosis of HCC cells in a dose- and time-dependent manner. Ropivacaine also has a trait to inhibit the migration of HCC cells; ropivacaine damaged the mitochondria of HCC cells. The results also indicated that ropivacaine was able to interact with caspase-3, promote cytoplasmic caspase-3 migration into the nucleus, stimulate cleavage of caspase-3 and PARP-1, caspase-9 proteins, inhibit the expression of Bcl-2, promote expression of Apaf-1 and mitochondria release cytochrome C, and activate the activity of caspase-3. Conclusions Ropivacaine has a novel role in promoting apoptosis of HCC cells; The role mechanism of ropivacaine maybe involve in damaging the function of mitochondria and activating the caspase-3 signalling pathway in HCC cells. Our findings provide novel insights into the local anaesthetic agents in the therapy of HCC patients. Electronic supplementary material The online version of this article (10.1186/s40659-019-0242-7) contains supplementary material, which is available to authorized users.
Hepatitis B virus (HBV)-X protein (HBx) plays critical role in inducing the malignant transformation of liver cells. Alpha fetoprotein (AFP) expression is closely related to hepatocarcinogenesis. We report that Oct4, Klf4, Sox2 and c-myc expression positively associated with AFP(+)/HBV(+) hepatocellular carcinoma(HCC) tissues, and the expression of the stemness markers CD44, CD133 and EpCAM was significantly higher in AFP(+)/HBV(+) HCC tissues compared to normal liver tissues or AFP (-)/HBV(-) HCC tissues. AFP expression turned on prior to expression of Oct4, Klf4, Sox2 and c-myc, and the stemness markers CD44, CD133 and EpCAM in the normal human liver L-02 cell line or CHL cell lines upon transfection with MCV-HBx vectors. Stem-like cells generated more tumour colonies compared to primary cells, and xenografts induced tumourigenesis in nude mice. Expression of reprogramming-related proteins was significantly enhanced in HLE cells while transfected with pcDNA3.1-afp vectors. The specific PI3K inhibitor Ly294002 inhibited the effects of pcDNA3.1-afp vectors. AFP-siRNA vectors were able to inhibit tumour colony formation and reprogramming-related gene expression. Altogether, HBx stimulates AFP expression to induce natural reprogramming of liver cells, and AFP plays a critical role in promoting the initiation of HCC progenitor/stem cells. AFP may be a potential novel biotarget for combating HBV-induced hepatocarcinogenesis.
Hepatocellular carcinoma (HCC) is a common malignant tumor of which the occurrence and development, the tumorigenicity of HCC is involving in multistep and multifactor interactions. Interleukin-6 (IL-6), a multifunctional inflammatory cytokine, has increased expression in HCC patients and is closely related to the occurrence of HCC and prognosis. IL-6 plays a role by binding to the IL-6 receptor (IL-6R) and then triggering the Janus kinase (JAK) associated with the receptor, stimulating phosphorylation and activating signal transducer and activator of transcription 3 (STAT3) to initiate downstream signals, participating in the processes of anti-apoptosis, angiogenesis, proliferation, invasion, metastasis, and drug resistance of cancer cells. IL-6/STAT3 signal axes elicit an immunosuppressive in tumor microenvironment, it is important to therapy HCC by blocking the IL-6/STAT3 signaling pathway. Recent, some inhibitors of IL-6/STAT3 have been development, such as S31-201 or IL-6 neutralizing monoclonal antibody (IL-6 mAb), Madindoline A (Inhibits the dimerization of IL-6/IL-6R/gpl30 trimeric complexes), C188-9 and Curcumin (Inhibits STAT3 phosphorylation), etc. for treatment of cancers. Overall, consideration of the IL-6/STAT3 signaling pathway, and its role in the carcinogenesis and progression of HCC will contribute to the development of potential drugs for targeting treatment of liver cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.