Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (Ailsa Craig and HG6-61) were evaluated using the Illumina sequencing platform. A total of 26,397 genes, which were expressed in at least one developmental stage, were detected in the two cultivars, and the expression patterns of those genes could be divided into 20 groups using a K-mean cluster analysis. Gene Ontology term enrichment analysis indicated that genes involved in RNA regulation, secondary metabolism, hormone metabolism and cell wall metabolism were the most highly differentially expressed genes during fruit development and ripening. A co-expression analysis revealed several transcription factors whose expression patterns correlated with those of genes associated with ascorbic acid, carotenoid and flavonoid biosynthesis. This transcriptional correlation was confirmed by agroinfiltration mediated transient expression, which showed that most of the enzymatic genes in the ascorbic acid biosynthesis were regulated by the overexpression of each of the three transcription factors that were tested. The metabolic dynamics of ascorbic acid, carotenoid and flavonoid were investigated during fruit development and ripening, and some selected transcription factors showed transcriptional correlation with the accumulation of ascorbic acid, carotenoid and flavonoid. This transcriptome study provides insight into the regulatory mechanism of fruit development and presents candidate transcription factors involved in secondary metabolism.
Aligned, individual iron square cuboid nanoparticles have been achieved by taking advantage of epitaxial, three-dimensional-island growth on GaAs(001) during electrodeposition at low deposition rates. The nanoparticles exhibit lateral dimensions between 10 and 80 nm and heights below 40 nm. Surface {100} facets predominate with a thin crystalline oxide shell that protects the nanoparticles during prolonged storage in air. The single crystallinity of the iron in combination with structural alignment leads to an in-plane magnetic anisotropy. These immobilized, oriented, and stable nanoparticles are promising for applications in nanoelectronic, sensor, and data storage technologies, as well as for the detailed analysis of the effect of shape and size on magnetism at the nanoscale.
Electron beam induced current (EBIC) measurements were carried out in situ in the scanning electron microscope on free-standing GaAs/Fe core-shell nanowires (NWs), isolated from the GaAs substrate via a layer of aluminum oxide. The excess current as a function of the electron beam energy, position on the NW, and scan direction were collected, together with energy dispersive x-ray spectroscopy. A model that included the effects of beam energy and Fe thickness predicted an average collection efficiency of 60%. Small spatial oscillations in the EBIC current were observed, that correlated with the average Fe grain size (30 nm). These oscillations likely originated from lateral variations in the interfacial oxide thickness, affecting the resistance, barrier potentials, and density of minority carrier recombination traps.
The electrode reactions during the initial stages of Fe electrodeposition on GaAs from a sulfate-based aqueous electrolyte, were investigated. Electrochemical quartz microbalance measurements were carried out to distinguish hydrogen evolution from Fe deposition. For conditions with a lower hydrogen evolution rate, hemispherical Fe nanoparticles with negligible in-plane magnetic anisotropy are obtained. In contrast, when hydrogen evolution dominates over Fe electrodeposition, the deposited nanoparticles exhibit a defined faceted shape, crystallographic alignment and magnetic in-plane anisotropy. This beneficial impact of hydrogen evolution on the epitaxy is discussed with regard to the role of hydrogen adsorption during Fe/GaAs interface formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.