Ternary zinc-nickel-aluminum hydrotalcites (ZnNiAl-LDHs) were prepared by hydrothermal synthesis. The structure and morphology of the materials were characterized using X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption–desorption (BET) and other test techniques. ZnNiAl-LDHs was applied in the treatment of uranium-containing wastewater, the effects of initial pH of the solution, adsorption temperature and contact time on its adsorption performance were systematically investigated, and the adsorption performance of ZnNiAl-LDHs and ZnAl-LDHs on uranyl ions were compared. The result showed that ZnNiAl-LDHs were 3D microspheres self-assembled from flakes, with a specific surface area of 102.02 m2/g, which was much larger than that of flake ZnAl-LDHs (18.49 m2/g), and the saturation adsorption capacity of ZnNiAl-LDHs for uranyl ions (278.26 mg/g) was much higher than that of ZnAl-LDHs for uranyl ions (189.16 mg/g), so the ternary ZnNiAl-LDHs had a more excellent adsorption capacity. In addition, kinetic and thermodynamic studies showed that the adsorption process of ZnNiAl-LDHs on uranyl ions conformed to the pseudo-second-order kinetic model and Langmuir isotherm model. The positive value of ΔH and the negative value of ΔG indicated that the adsorption process was endothermic and spontaneous. The adsorption mechanism was analyzed by X-ray energy spectroscopy (EDS), fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The results showed that the adsorption of uranyl ions by ZnNiAl-LDHs mainly consisted of complexation and ion substitution. The research results prove that ZnNiAl-LDHs is an adsorbent with low cost and excellent performance, and it has a good application prospect in the field of uranium-containing wastewater treatment.
In order to make full use of waste as raw materials to prepare low-cost zeolite, develop green chemical industry and achieve the purpose of treating waste with waste. High-purity zeolite X was prepared by the alkaline fusion hydrothermal method (AFH) using waste basalt powder as raw material, and was used as an adsorbent to investigate the adsorption performance for uranium-containing wastewater. The structure, morphology, specific surface area, chemical composition, chemical bonds, characteristic functional groups and chemical states of surface elements of the samples were characterized by XRD, SEM, BET, EDS, FT-IR and XPS. zeolite X with high crystallinity and rich hydroxyl/carboxyl groups was successfully synthesized by the AFH method, and its specific surface area was as high as 623.4 m 2 •g -1 . When the adsorption time (t) is 720 min, the adsorption temperature (T) is 30 ℃, the initial uranium (VI) concentration is (C0) 35 mg/L, pH is 6.0, and the adsorbent dosage (m) is 5/35 mg/mL, the equilibriu adsorption capacity of zeolite X for uranyl ions is 228.4 mg•g -1 . Thermodynamic results show that the adsorption process of uranyl ions by zeolite X is spontaneous and exothermic. Freundlich isotherms and quasi-second-order models are suitable to describe the adsorption process of uranyl ions by zeolite X. XPS analysis results show that -OH and -COOH play an important role in the adsorption process. At the same time, there is ion exchange between UO2 2+ and zeolite during the adsorption process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.