In the present work, methyl viologen (1,1′-dimethyl-4,4′-bipyridinium dichloride) is used as a scavenger to estimate the radiolytic yields of water decomposition products from room temperature to 400 °C by pulse radiolysis method. {G(e aq -) + G(OH) + G(H)} has been studied using a 0.5 mM MV 2+ solution in the presence of 10 mM NaCOOH up to 200 °C and in the presence of 0.2 M ethanol up to 400 °C. The results show that the {G(e aq -) + G(OH) + G(H)} increases with temperature up to 350 °C at 25 MPa, while it depends also on pressure in supercritical conditions. The G(e aq -) was estimated using MV 2+ solutions in the presence of 0.2 M tert-butyl alcohol. The results agree well with the reported data up to around 300 °C at 25 MPa; however, in supercritical conditions a very significant density effect was observed. At a given temperature, G(e aq -) and {G(e aq -) + G(OH) + G(H)} decrease with increasing density while at a fixed density they decrease with increasing temperature.
The Tearscope-Plus™ is not interchangeable with either the Oculus® K5M measurement of tear stability (NIKBUT-1) or the LipiView® maximum and minimum lipid thickness.
BackgroundThe DEP domain is a globular domain containing approximately 90 amino acids, which was first discovered in 3 proteins: Drosophila disheveled, Caenorhabditis elegans EGL-10, and mammalian Pleckstrin; hence the term, DEP. DEPDC1B is categorized as a potential Rho GTPase-activating protein. The function of the DEP domain in signal transduction pathways is not fully understood. The DEPDC1B protein exhibits the characteristic features of a signaling protein, and contains 2 conserved domains (DEP and RhoGAP) that are involved in Rho GTPase signaling. Small GTPases, such as Rac, CDC42, and Rho, regulate a multitude of cell events, including cell motility, growth, differentiation, cytoskeletal reorganization and cell cycle progression.ResultsIn this study, we found that it was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B plays a role in regulating Rac1 translocated onto cell membranes, suggesting that DEPDC1B exerts a biological function by regulating Rac1. We examined oral cancer tissue; 6 out of 7 oral cancer tissue test samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue.ConclusionsDEPDC1B was a guanine nucleotide exchange factor and induced both cell migration in a cultured embryonic fibroblast cell line and cell invasion in cancer cell lines; moreover, it was observed to promote anchorage-independent growth in oral cancer cells. We also demonstrated that DEPDC1B exerts a biological function by regulating Rac1. We found that oral cancer samples overexpressed DEPDC1B proteins, compared with normal adjacent tissue. Suggest that DEPDC1B plays a role in the development of oral cancer. We revealed that proliferation was linked to a novel DEPDC1B-Rac1-ERK1/2 signaling axis in oral cancer cell lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.