BackgroundMicroRNAs (miRNAs) are short, highly conserved small noncoding RNAs that had fundamental roles in post-transcriptional gene expression, and they are crucial for proper control of biological processes and known to participate in embryo implantation. However, miRNA expression profiles in the pre-receptive and receptive phases of the goat endometrium during embryo implantation are unknown.ResultsA total of 1,069 and 847 miRNAs were expressed in receptive (R) and pre-receptive (P) goat endometrium, and 632 miRNAs were co-expressed in both phases. We identified 545 (50.98%) known miRNAs in the R library and 522 (61.63%) in the P library. There were 110 up-expressed miRNAs and 33 down-expressed miRNAs in receptive endometrium compared with the pre-receptive endometrium meeting the criteria of P-values< 0.05. Moreover, GO and KEGG analysis of the target genes of the differentially expressed miRNAs revealed some candidate miRNAs, genes and pathways that may involve in the formation of the receptive endometrium. Based on stem-loop RT-qPCR, 15 miRNAs were detected and the results suggested that the majority of the miRNA expression data measured by Solexa deep sequencing could represent actual miRNA expression levels.ConclusionsOur data revealed the first miRNA profile related to the biology of the goat receptive endometrium during embryo implantation, and the results suggested that a subset of miRNAs might play important roles in the formation of endometrial receptivity. Thus, elucidating the physiological roles of endometrial miRNAs will help us better understand the genetic control of embryo implantation in goats.
Endometrium receptivity is essential for successful embryo implantation in mammals. However, the lack of genetic information remains an obstacle to understanding the mechanisms underlying the development of a receptive endometrium from the pre-receptive phase in dairy goats. In this study, more than 4 billion high-quality reads were generated and de novo assembled into 102,441 unigenes; these unigenes were annotated using published databases. A total of 3,255 unigenes that were differentially expressed (DEGs) between the PE and RE were discovered in this study (P-values < 0.05). In addition, 76,729–77,102 putative SNPs and 12,837 SSRs were discovered in this study. Bioinformatics analysis of the DEGs revealed a number of biological processes and pathways that are potentially involved in the establishment of the RE, notably including the GO terms proteolysis, apoptosis, and cell adhesion and the KEGG pathways Cell cycle and extracellular matrix (ECM)-receptor interaction. We speculated that ADCY8, VCAN, SPOCK1, THBS1, and THBS2 may play important roles in the development of endometrial receptivity. The de novo assembly provided a good starting point and will serve as a valuable resource for further investigations into endometrium receptivity in dairy goats and future studies on the genomes of goats and other related mammals.
This study epigenetically examined the effect of fluoride on early embryos of Kunming mice administered with 0, 20 (low), 60 (medium), and 120 mg/L (high) sodium fluoride (NaF). The results showed that NaF repressed oocyte maturation, fertilization and blastocyst formation in all NaF-treated groups. Meanwhile, TUNEL assay showed that embryo apoptosis was induced dramatically in blastocyst stage at either low or medium doses, and in 8-cell stage at high dose, compared to the control, suggesting a dose-dependent effect. Furthermore, the immunostaining displayed global increases of DNA methylation, H3K9m2 and H3K4m2 with increasing dose, which were consistent with gene expression results, exhibiting general increases of DNMT1, DNMT3a, G9a, LSD1, and MLL1 and a reduction of JHDM2a in transcription and protein levels. More closely, the differential methylation domain in parentally imprinted gene H19 showed low methylation, while materanlly imprinted gene IGF2 showed high methylaiton in NaF-treated groups compared to the control group, which corresponded with high expression of H19 and low expression of IGF2 confirmed by qPCR. Collectively, we demonstrated that fluoride epigenetically impaired mouse oocyte maturation and embryonic development, supplying a better knowledge of fluoride in toxicology and a deeper evaluation of its potential influence in physiological and clinical implications.
BackgroundEnzootic nasal tumor virus (ENTV) is a betaretrovirus of sheep (ENTV-1) and goats (ENTV-2) associated with neoplastic transformation of epithelial cells of the ethmoid turbinate. Confirmation of the role of ENTV in the pathogenesis of enzootic nasal adenocarcinoma (ENA) has yet to be resolved due to the inability to culture the virus. Very little is known about the prevalence of this disease, particularly in China.MethodsTo evaluate the genetic diversity of ENTV-2 from Shaanxi province of China, the complete genome sequence of four isolates from Shaanxi province was determined by RT-PCR. These sequences were analyzed to evaluate their genetic relatedness with other small ruminant betaretroviruses. Phylogenetic analyses based on the gag gene and env gene were performed.ResultsThe ENTV-2-Shaanxi1 genome shared 97.0% sequence identity with ENTV-2-SC (accession number HM104174.1), and 89.6% sequence identity with the ENTV-2 sequences (accession number AY197548.1). ENTV-2 is closely related to the ENTV-1 and jaagsiekte retrovirus (JSRV). The main sequence differences between these viruses reside in LTR, two small regions of Gag, Orf-x, and the transmembrane (TM) region of Env. A stretch of 6 consecutive proline residues exists in VR1 of the ENTV-2-Shaanxi1 ~ 4 isolates. All the ENTV-2-Shaanxi isolates have the YXXM motif in the cytoplasmic tail of the Env. Phylogenetic analysis by nucleotide sequences showed that ENTV-2-Shaanxi1 ~ 4 isolates were closest related to two ENTV-2 isolates published in NCBI, especially with ENTV-2-SC strain.ConclusionsThis finding indicates that ENA most likely was introduced to Shaanxi province by the movement of contaminated goats from other areas in China. This study adds to understand the circulation, variation and distribution of ENTV-2, and may prove beneficial in future control or eradication programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.