High-entropy oxides (HEOx) are multicomponent (≥5) complex oxides that possess material properties and functions unexpected from their constituent simple oxides. Previous studies demonstrated that a cation-doped HEOx, MgCoNiCuZnO 5 , shows good catalytic activity, excellent ionic conductivity, and high energy storage. The structural and mechanical stabilities of materials are pivotal to their applications. However, how temperature and pressure influence the structural stability of cation-doped HEOx and how doping affects the mechanical properties are yet to be understood. In this work, we investigated the structural stabilities of undoped and Li/Mn-doped MgCoNiCuZnO 5 in heating or under compression using in situ synchrotron X-ray diffraction (XRD), and determined their elastic moduli using high-pressure XRD. Our results show that the HEOx compounds are structurally stable at temperatures up to ∼450 °C or at pressures up to ∼50 GPa, and that Li/Mn doping makes the HEOx more compressible. Our molecular static (MS) calculations predicted that the formation reaction of a HEOx is endothermic, consistent with the fact that a single-phase HEOx can only be produced at high temperatures. The MS calculations also revealed that the observed doping-induced elastic softening stems from the introduction of the Li−O/Mn−O ionic bonds in the HEOx compound, which are weaker than other cation−oxygen ionic bonds in the undoped HEOx. These findings will be indispensable to engineer HEOx materials for use in ion batteries, catalysis, and other fields.
Two-dimensional van der Waals (vdW) magnetic materials have emerged as possible candidates for future ultrathin spintronic devices, and finding a way to tune their physical properties is desirable for wider applications. Owing to the sensitivity and tunability of the physical properties to the variation of interatomic separations, this class of materials is attractive to explore under pressure. Here, we present the observation of direct to indirect band gap crossover and an insulator-metal transition in the vdW antiferromagnetic insulator CrPS 4 under pressure through in-situ photoluminescence, optical absorption, and resistivity measurements. Raman spectroscopy experiments revealed no changes in the spectral feature during the band gap crossover whereas the insulator-metal transition is possibly driven by the formation of the high-pressure crystal structure. Theoretical calculations suggest that the band gap crossover is driven by the shrinkage and rearrangement of the CrS 6 octahedra under pressure. Such high tunability under pressure demonstrates an interesting interplay between structural, optical and magnetic degrees of freedom in CrPS 4 , and provides further opportunity for the development of devices based on tunable properties of 2D vdW magnetic materials.
A key factor that determines the mechanical and electrical performance of graphene-based materials and devices is how graphene behaves under extreme conditions, yet the response of few-layer graphene to high shear stress has not been investigated experimentally. Here we applied high pressure and shear to graphene powder using a rotational diamond anvil cell and studied the recovered sample with multiple means of characterization. Sustaining high pressure and shear, graphene breaks into nanometer-long clusters with generation of large number of defects. At a certain stress level, it transforms to amorphous state and carbon onions. The reduction of infrared reflectivity in the severely sheared phase indicates the decrease in conductivity. Our results unveil the shear sensitive nature of graphene, point out the effects of shear on its physical properties, and provide a potential method to manipulate this promising material.
We report the investigations on the structural and electronic properties of an inverse spinel Fe3S4 at high pressures using synchrotron x-ray diffraction (XRD) and electrical transport measurements. Our XRD measurements at high pressures reveal an irreversible structural phase transformation on compression above ∼3 GPa from a cubic spinel (Fd-3m space group) into a monoclinic Cr3S4-type structure (I2/m space group). Electrical transport measurements suggest that the high pressure monoclinic phase has a semiconducting behavior. This semiconducting behavior is found to persist up to the highest pressure of measurement of ∼23 GPa. These results show that while Fe3S4 possesses similar high pressure structural properties with other thiospinels, the electronic properties under pressure show a rather strong similarity to its oxide counterpart, Fe3O4, at high pressures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.