In order to simulate the distribution of magnetic field generated by cardiac electrophysiological activities, a three-dimensional (3D) computing framework of magnetocardiogram forward problem based on a finite element method (FEM) is proposed. First, the 3D heart-torso geometry model is established from the 3D reconstruction of magnetic resonance images. Then the modified FitzHugh-Nagumo (FHN) equation combined with 3D cardiac geometry is used to investigate the propagation of transmembrane potential (TMP). In the end, quasi-static Maxwell equations and 3D torso model are used to explore the propagation of the bioelectromagnetic field produced by TMP. In our calculation, the Galerkin finite element method is used. The results show that the FEM-model can simulate extracorporeal magnetic field. Further, numerical solutions of simplified models with the one-dimensional FHN equation and the straight wire are respectively consistent with the analytical solutions, which verifies the feasibility of the computing framework. In summary, this framework successfully simulates the cardiac TMP and extracorporeal magnetic field, which may conduce to the study of magnetocardiogram inverse problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.