Microplastics (MPs) in marine and terrestrial environments have been intensively studied, but the dynamics of airborne MPs remains limited. Existing studies on atmospheric MPs are mostly derived from collection of atmospheric deposition, whereas direct measurements of airborne MPs are scarce. However, the abundance of airborne MPs is more relevant for evaluating human inhalation exposure risk. Herein, airborne MPs in indoor and outdoor environments from urban and rural areas of a coastal city in eastern China were investigated. MP concentrations (mean±SD) in indoor air (1583 ± 1180 n/m 3 ) were an order of magnitude higher than outdoor air (189 ± 85 n/m 3 ), and airborne MP concentrations in urban areas (224 ± 70 n/m 3 ) were higher than rural areas (101 ± 47 n/m 3 ). MPs smaller than 100 µm dominated airborne MPs, and the predominant shape of airborne MPs was fragments, as opposed to fibers. The larger MP size fractions contained a higher proportion of fibers, whereas the smaller size fractions were nearly exclusively composed of fragments. The health risk caused by ubiquitous airborne MPs should not be discounted as the maximum annual outdoor exposure of airborne MPs can reach 1 million/year, while indoor exposure may be even higher due to higher indoor airborne MP concentrations.
Airborne microplastics (MPs) are receiving increasing attention due to their ubiquitous nature and the potential human health consequences resulting from inhalation. The limited data for airborne MP concentrations vary widely among studies (∼4 orders of magnitude), but comparisons are tenuous due to the inconsistent collection and detection/enumeration methodologies among studies. Herein, we used uniform methodologies to obtain comparable airborne MP concentration data to assess MP exposure intensity in five Chinese megacities. Airborne MP concentrations in northern cities (358 ± 132 items/m 3 ) were higher than those in southeast cities (230 ± 94 items/m 3 ) but of a similar order of magnitude, unlike previous studies. The majority (94.7%) of MPs found in air samples were smaller than 100 μm, and the main shape of airborne MPs was fragments (88.2%). Polyethylene, polyester, and polystyrene were the dominant polymers comprising airborne MPs. No consistent relationships were detected between airborne MP concentration and typical socioeconomic indices, and the spatial and diurnal patterns for airborne MPs were different from various components of air quality indices (PM 2.5 , PM 10 , etc.). These findings reflect the contrasting source/generation dynamics between airborne MPs and other airborne pollutants. Maximum annual exposure of humans to airborne MPs was estimated in the range of 1−2 million/year in these megacities, highlighting the need for additional research examining the human health risks from the inhalation of airborne MPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.