The precursor of solution-processed perovskite thin films is one of the most central components for high-efficiency perovskite solar cells. We first present the crucial colloidal chemistry visualization of the perovskite precursor solution based on analytical spectra and reveal that perovskite precursor solutions for solar cells are generally colloidal dispersions in a mother solution, with a colloidal size up to the mesoscale, rather than real solutions. The colloid is made of a soft coordination complex in the form of a lead polyhalide framework between organic and inorganic components and can be structurally tuned by the coordination degree, thereby primarily determining the basic film coverage and morphology of deposited thin films. By utilizing coordination engineering, particularly through employing additional methylammonium halide over the stoichiometric ratio for tuning the coordination degree and mode in the initial colloidal solution, along with a thermal leaching for the selective release of excess methylammonium halides, we achieved full and even coverage, the preferential orientation, and high purity of planar perovskite thin films. We have also identified that excess organic component can reduce the colloidal size of and tune the morphology of the coordination framework in relation to final perovskite grains and partial chlorine substitution can accelerate the crystalline nucleation process of perovskite. This work demonstrates the important fundamental chemistry of perovskite precursors and provides genuine guidelines for accurately controlling the high quality of hybrid perovskite thin films without any impurity, thereby delivering efficient planar perovskite solar cells with a power conversion efficiency as high as 17% without distinct hysteresis owing to the high quality of perovskite thin films.
The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 kPa and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.
Graphene's unique electronic and optical properties have made it an attractive material for developing ultrafast short-wave infrared (SWIR) photodetectors. However, the performance of graphene SWIR photodetectors has been limited by the low optical absorption of graphene as well as the ultrashort lifetime of photoinduced carriers. Here, we present two mechanisms to overcome these two shortages and demonstrate a graphene-based SWIR photodetector with high responsivity and fast photoresponse. In particular, a vertical built-in field is employed in the graphene channel for trapping the photoinduced electrons and leaving holes in graphene, which results in prolonged photoinduced carrier lifetime. On the other hand, plasmonic effects were employed to realize photon trapping and enhance the light absorption of graphene. Thanks to the above two mechanisms, the responsivity of this proposed SWIR photodetector is up to a record of 83 A/W at a wavelength of 1.55 μm with a fast rising time of less than 600 ns. This device design concept addresses key challenges for high-performance graphene SWIR photodetectors and is promising for the development of mid/far-infrared optoelectronic applications.
Two-dimensional (2D) Sn-based lead-free perovskites have attracted extensive attention because of their nontoxicity and wide light absorption. It has been proven that the introduced organic spacer cations in the perovskite crystal prevent Sn2+ from oxidation to Sn4+. However, the effects of the alkyl chain length of these cations on the perovskite properties are unclear. Here, we investigate the impacts of chain length on crystal orientation and phase distribution of 2D Sn-based perovskite films by employing different alkylamines spacer cations (butylamine, octylamine, and dodecylamine). With the increase of alkyl chain length, the phase distribution of 2D Sn-based perovskite crystals become disordered and less oriented. Therefore, benefiting from application of a short alkyl chain in the organic spacer cation (e.g., BA), we manage to retard the oxidation process of Sn2+ for better device performance. Our work provides systematic understanding of configuration and size of organic spacer cations, which will further contribute to highly stable and efficient lead-free perovskite solar cells.
The expensive and unstable organic hole transport layer (HTL) is one of the crucial problems that hampers the wide application of perovskite solar cells.Here, an MAPbI 3 -(BA) 2 (MA) nÀ1 Pb n I 3n+1 3D-2D perovskite-perovskite planar heterojunction (PPPH) through a facile BAI and MAPbI 3 interfacial ion exchange process was conducted. A graded band structure was formed for efficient charge separation, and the conductivity of the 2D perovskite can be tuned by extrinsic FA incorporation, which provides effective conducting channels for holes, making the modified 2D perovskite layer a promising and stable HTL. Optimized solar cells based on 3D-2D PPPH showed a champion power conversion efficiency (PCE) of 13.15% initially and 16.13% after thermal aging, and could maintain 71% output for 50 days under 65% humidity, and 74% for 30 days under 85 C, without encapsulation. This work points to realize low cost and ambient compatible PPPH solar cells with high PCE and robust stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.