In this study, a kind of anionic polyacrylamide (P(AM-AA-AMPS)) was synthesized using acrylamide (AM), acrylic acid (AA), and 2-acrylamido-2-methyl propane sulfonic acid (AMPS) under ultraviolet (UV) irradiation. The conditions of the polymerization reaction such as monomer mass ratio, solution pH value, EDTA concentration and urea concentration were investigated by using the single factor approach and an L 16 (4 5 ) orthogonal array. The structure and morphologies of the copolymer were determined by nuclear magnetic resonance spectrometer (NMR), infrared spectrometer (IR) and scanning electron microscope (SEM). The results show P(AM-AA-AMPS) with the intrinsic viscosity of 1.5 Â 10 3 mL g À1 was synthesized at optimal conditions: mass ratio, m(AM) : m(AA) : m(AMPS) of 70 : 10 : 10, pH value of 9.0, EDTA concentration of 0.10% and urea concentration of 0.20%. In addition, P(AM-AA-AMPS) had better flocculation efficiency than commercial PAM in sludge dewatering experiment; the minimum filter cake moisture content could be reduced to 65.1%. V C 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
In this study, a new composite flocculant was prepared by premixing polymeric aluminum ferric sulfate (PAFS) with cationic polyacrylamide (CPAM) to treat textile dye wastewater. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were conducted to investigate the structure and morphology of the PAFS-CPAM. The effects of flocculant dosage, initial pH of textile dye wastewater, and settling time after flocculation on the removal of turbidity and chemical oxygen demand (COD) were examined. The flocculation efficiency of PAFS-CPAM for dye treatment was compared with PAFS, CPAM, PAFS/CPAM (PAFS followed by CPAM), and CPAM/PAFS (CPAM followed by PAFS). The synergy of PAFS and CPAM increased the (Fe-Al) b species of PAFS-CPAM. Treatment with PAFS-CPAM was more effective in removing turbidity and COD than PAFS, CPAM, PAFS/ CPAM, and CPAM/PAFS. The turbidity and COD removal rates of textile wastewater were higher than 80 and 90% in the pH range of 5.5 to 8.5, respectively. Furthermore, PAFS-CPAM demonstrated excellent performance in reducing sludge volume after flocculation.
P(AM-DAC-BA) was synthesized through copolymerization of acrylamide (AM), acryloyloxyethyl trimethyl ammonium chloride (DAC), and butylacrylate (BA) under ultraviolet (UV) initiation using response surface methodology (RSM). The influences of light intensity, illumination time, and photoinitiator concentration on the intrinsic viscosity [η] of P(AM-DAC-BA) were investigated. RSM model based on the influencing data was established for optimizing synthetic conditions. It was found that, at light intensity 1491.67 μw·cm−2, illumination time 117.89 min, and photoinitiator concentration 0.60‰, there was a better material performance achieved. Thus P(AM-DAC-BA) prepared under the above conditions showed excellent dewatering performance that, with 40 mg·L−1 P(AM-DAC-BA) at pH 7, the residual turbidity of supernatant and the dry solid content were up to 38 NTU, 28.5%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.