Purpose
Collision avoidance is considered as a crucial issue in mobile robotic navigation to guarantee the safety of robots as well as working surroundings, especially for humans. Therefore, the position and velocity of obstacles appearing in the working space of the self-driving mobile robot should be observed to help the robot predict the collision and choose traversable directions. This paper aims to propose a new approach for obstacle tracking, dubbed MoDeT.
Design/methodology/approach
First, all long lines, such as walls, are extracted from the 2D-laser scan and considered as static obstacles (or mapped obstacles). Second, a density-based procedure is implemented to cluster nonwall obstacles. These clusters are then geometrically fitted as ellipses. Finally, the combination of Kalman filter and global nearest-neighbor (GNN) method is used to track obstacles’ position and velocity.
Findings
The proposed method (MoDeT) is experimentally verified by using an autonomous mobile robot (AMR) named AMR SR300. The MoDeT is found to provide better performance in comparison with previous methods for self-driving mobile robots.
Research limitations/implications
The robot can only see a part of the object, depending on the light detection and ranging scan view. As a consequence, geometrical features of the obstacle are sometimes changed, especially when the robot is moving fast.
Practical implications
This proposed method is to serve the navigation and path planning for the AMR.
Originality/value
(a) Proposing an extended weighted line extractor, (b) proposing a density-based obstacle detection and (c) implementing a combination of methods [in (a) and (b) constant acceleration Kalman and GNN] to obtain obstacles’ properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.