The hazardous effects of spoofing attacks on the global navigation satellite system (GNSS) receiver are well known. Technologies and algorithms to increase the awareness of GNSS receivers against such attacks become more important and necessary. We present the validation of two statistical spoofing detection methods, namely the Chisquare goodness of fit (GoF) test and the Sign test applied to pairwise correlator differences, for each satellite tracked by the receiver. The test bench for the algorithms, both implemented in a software receiver, is the public database produced by the University of Texas at Austin, which reproduces various representative cases of spoofing attacks (the so-called TEXBAT). The algorithms show a very promising capability of detecting the attack, in particular when an aggregate decision is taken based on a joint detection upon all the tracked satellites. Furthermore, the GoF test appears also reliable in dynamic conditions and in case of a huge power advantage of the spoofing signal. The response of the receiver to the attacks confirms the spoofing signal represents an ''extraneous agent'' which, before taking control of the receiver, can be recognized by properly combined strategies of signal quality monitoring.
In this paper, we study the quantum teleportation of an unknown atomic state based on the two-photon Jaynes-Cummings model, consisting of an effective two-level atom with a two-mode field in the generalized photon-added pair coherent state (GPAPCS). By applying the detecting method, we use a scheme that includes two two-level atoms and a cavity field to teleport the unknown atomic state from a sender to a receiver. The results show that the number of photons added to the field and the intensity of the initial field influence the average fidelity and success probability of the teleportation process. The time-evolution dependence of the average fidelity is also considered and compared for the field in the pair coherent state and in the GPAPCS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.