This paper revisits the problem of estimating the pose (i.e. position and attitude) of a robotic vehicle by combining landmark position measurements provided by a stereo camera with measurements of an Inertial Measurement Unit. The distinguished features with respect to similar works on the topic are two folds: First, the vehicle's linear velocity is not measured neither in the body frame nor in the inertial frame; Second, no prior knowledge on the gravity direction expressed in the inertial frame is required. Instead both the linear velocity and the gravity direction are estimated together with the pose. Another innovative feature of the paper relies on the idea of over-parametrizing the gravity direction vector evolving on the unit 2-sphere S 2 by an element of SO(3) so that the error system in first order approximations can be written in an "elegant" linear time-varying form. The proposed deterministic observer is accompanied with an observability analysis that points out an explicit observability condition under which local exponential stability is granted. Reported simulation results further indicate that the observer's domain of convergence is large.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.