In this paper, we investigate the intra-laminar size effect of discontinuous fiber composites (DFCs) with three different unidirectional prepreg platelet sizes (75×12, 50×8, and 25×4 mm). Experimentally, we test five different sizes of single edge notched specimens, geometrically scaled (1:2/3:1/3:1/6:1/20), with the constant thickness. We observe notch insensitivity meaning that the crack initiate away from the notch, when the structure sizes are small (from the ratio 1/20 to 1/6). However, the crack always initiate for the ratio of 2/3 and 1. Bazants size effect law is used to analyze such unconventional fracturing behaviors. The experimental results are fitted using the linear regression analysis follow by the size effect law. The transition behavior of the DFCs from the strength based criteria to the energy based criteria is clearly observed. Also, as the platelet size increases, the fracture behaviors shift away from the energy based criteria, which implies a decrease in brittleness. To obtain the intra-laminar fracture energy, G f , we have developed a finite element model based on the stochastic laminate analogy. The platelet size of 75×12 mm shows 96.8% increase in the fracture energy compared to the platelet size of 25×4 mm while behaves less brittle way. In conclusion, this study examines the effect of the platelet sizes of the DFCs in the presence of the notch. In this process, capturing the quasi-brittleness of the material using the nonlinear fracture mechanics is essential and we accomplish this using the simple size effect law. This work expands on an earlier SAMPE conference proceeding [1], and thus, there is a significant overlap in texts and figures between this and the SAMPE conference proceedings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.