Small for gestational age (SGA) and fetal growth restriction (FGR) is difficult to define exactly. In this pregnancy condition, the fetus does not reach its biological growth potential as a consequence of impaired placental function, which may be because of a variety of factors. Fetuses with FGR are at risk for perinatal morbidity and mortality, and poor long-term health outcomes, such as impaired neurological and cognitive development, and cardiovascular and endocrine diseases in adulthood. At present no gold standard for the diagnosis of SGA/FGR exists. The first aim of this review is to: summarize areas of consensus and controversy between recently published national guidelines on small for gestational age or fetal growth restriction; highlight any recent evidence that should be incorporated into existing guidelines. Another aim to summary a number of interventions which are being developed or coming through to clinical trial in an attempt to improve fetal growth in placental insufficiency. Key words: fetal growth restriction (FGR), Small for gestational age (SGA)
Background: In clinical obstetrics, many guidelines recommended the use of Doppler fetal ductus venosus blood flow to monitor and to manage fetal growth restriction (FGR). The ductus venosus and the pulmonary venous flow pattern of fetuses are similar. Umbilical artery pH (UA pH) is essential in identifying adverse pregnancy outcomes, particularly in fetal growth restriction cases. Nevertheless, the literature indicates that the relationship between pulmonary vein pulsatility index (PVPI) and UA pH in FGR cases has not been well investigated. This study aimed to identify the alteration in PVPI in FGR cases and evaluate the correlation between PVPI and UA pH in FGR newborns. Methods: This matched cohort study of singleton pregnancies from 28+0 to 40+0 weeks of gestation without congenital abnormalities included 135 cases of FGR (disease group) and 135 cases of normal growth (control group). The PVPI was measured at the proximal segment of the right or left pulmonary vein, approximately 5 mm from the left atrium wall. The umbilical artery pulsatility index (UAPI) was measured on the free umbilical cord. An elective cesarean section or labor induction are both options for ending the pregnancy, depending on the condition of the mother or fetus. Umbilical artery blood samples were collected within 5 minutes of delivery for UA pH measurement. SPSS version 20 and Medcalc version 20.1 were used for data analysis. Results: FGR cases had a significantly higher mean fetal PVPI than the control group (1.16 ± 0.26 vs. 0.84 ± 0.16; p < 0.01), and PVPI and UAPI were positively correlated (r = 0.63; p < 0.001). PVPI and UA pH were negatively correlated in FGR patients, with r = -0.68; p < 0.001. The PVPI value on the 95th percentile had a prognostic value of UA pH < 7.20 with a sensitivity of 88.2%, specificity of 66.3%, positive predictive value of 46.9%, and negative predictive value of 94.3%. Conclusions: There was a statistically significant difference in PVPI values in FGR cases compared to the normal growth group, a positive correlation between PVPI and UAPI, and a negative correlation between PVPI and UA pH. PVPI might have a prognostic meaning in predicting UA pH at birth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.