Background and Aim
Hepatic stellate cells (HSCs) activation, a critical event in liver fibrosis, has been recently shown to be related to autophagy. Determine whether chloroquine (CQ) could affect (i) the activation of HSC in vivo and (ii) the hepatic damage in a mice acute liver injury model.
Methods
The acute liver injury was induced in BALB/c mice by carbon tetrachloride (CCl4 group); 24 h before and after CCl4 administration animals were treated by CQ (CCl4 + CQ group). As control, mice treated by olive oil were considered. After 48 h from CCl4/olive oil administration, blood samples, liver tissues, and HSCs were harvested for analysis.
Results
In vivo, CQ attenuates CCl4‐induced acute liver damage as evidenced by (i) the reduction of liver enlargement, (ii) the reduction of liver swelling and necrosis also supported by a certain decrease of circulating transaminases level, and (iii) the reduction of liver fibrosis evaluated by collagen deposition and α‐sma protein expression. In HSCs isolated from CQ treated group, we observed the inhibition of autophagy proved by the increase in p62 protein and the decrease of lc3 protein. In addition, CQ reduced the expression of the HSCs activation markers α‐sma/collagen‐I and down‐regulated the expression of the proliferative marker ki67.
Conclusion
The autophagy attenuation exerted by CQ together with the reduction of the expression of the proliferation marker in HSCs can lessen the acute liver damage potentially opening the way to novel therapeutic approaches for hepatic fibrosis.
Introduction: Biliary atresia (BA) is the leading cause of liver fibrosis and failure in neonates with surgical jaundice, leading to poor outcome. Clinical and animal studies showing that granulocyte colony-stimulating factor (GCSF) treatment could improve liver fibrosis and cirrhosis suggest that GCSF may be offered as a low-cost intervention to improve the course of BA. This study aims to test the hypothesis that 10 µg/kg/day x 5 days of GCSF could improve liver function, reduce molecular pro-fibrotic markers and decrease liver fibrosis in a mouse model of bile duct ligation (BDL).
Methods: Balb/c mice underwent Sham surgery, or BDL for seven days followed by subcutaneous GCSF administration at 10 µg/kg/day for five consecutive days. Twelve days post-operation, blood samples were taken from the facial vein for leukocyte/neutrophil count and for measurement of serum enzymatic activities. The median lobe of the liver was acquired for total RNA and protein extraction. Moreover, the median liver lobe was used for hematoxylin-eosin staining, sirius red staining, and for visualization by immunohistochemistry (IHC).
Results: Twelve days post-operation, GCSF-treated bile duct-ligated (BDL) mice had a higher survival rate than that of placebo-treated mice (hazard ratio=1.88, p=0.084). The GCSF-treated mice had diminished liver serum transaminase activities (AST: 228.92 ± 222.67 vs. 313.46 ± 164.80 IU/L; ALP: 573.24 ± 177.89 IU/L vs. 471.75 ± 117.92 IU/L). GCSF treatment also reduced fibrosis with down-regulation of expression of pro-fibrotic markers including TGF-β1 (-2.61-fold mRNA), α-SMA (-2.46-fold mRNA; -1.88-fold protein, p<0.001) and collagen (-3.28-fold mRNA; -1.79-fold collagen deposit, p=0.0055). Moreover, GCSF treatment led to an improvement of histological grade and a reduction of extension of ductular structures caused by cholestasis (-1.77-fold CK7-positive bile ducts, p<0.0001; -2.33-fold CK7 positivity, p<0.0001).
Conclusion: Administration of GCSF (10 μg/kg/day) for five consecutive days improved the pathological condition of BDL mice. In this study, the positive effect of GCSF could be eventually surpassed due to end-stage liver disease caused from BDL in the mouse model. Further experiments are required to elucidate the effects and mechanisms of GCSF on bile obstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.